Merge branch 'changes'
This commit is contained in:
commit
147d8dbaa4
|
@ -2,12 +2,43 @@ import numpy as np
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import datetime as dt
|
import datetime as dt
|
||||||
import cv2
|
import cv2
|
||||||
|
from numpy._core.numeric import ndarray
|
||||||
import Utilities
|
import Utilities
|
||||||
|
import math
|
||||||
|
|
||||||
|
def _getChannelMedian(values: list[list[int]], channel: int) -> int:
|
||||||
|
channelValues = list(map(lambda rgb: rgb[channel], values))
|
||||||
|
channelValues.sort()
|
||||||
|
return channelValues[int(len(channelValues)/2)]
|
||||||
|
|
||||||
# apply median filter
|
# apply median filter
|
||||||
def applyMedianFilter(img, kSize):
|
def applyMedianFilter(img: ndarray, kSize: int):
|
||||||
filtered_img = img.copy()
|
filtered_img = img.copy()
|
||||||
|
|
||||||
|
for x in range(0, img.shape[0]):
|
||||||
|
for y in range(0, img.shape[1]):
|
||||||
|
|
||||||
|
values = []
|
||||||
|
|
||||||
|
for u in range(int(-kSize/2), int(kSize/2)+1):
|
||||||
|
s = x + u
|
||||||
|
if s < 0 or s >= img.shape[0]:
|
||||||
|
continue
|
||||||
|
|
||||||
|
for v in range(int(-kSize/2), int(kSize/2)+1):
|
||||||
|
t = y + v
|
||||||
|
if t < 0 or t >= img.shape[1]:
|
||||||
|
continue
|
||||||
|
|
||||||
|
values.append(img[s][t])
|
||||||
|
|
||||||
|
if len(values) > 0:
|
||||||
|
filtered_img[x][y] = [
|
||||||
|
_getChannelMedian(values, 0),
|
||||||
|
_getChannelMedian(values, 1),
|
||||||
|
_getChannelMedian(values, 2)
|
||||||
|
]
|
||||||
|
|
||||||
return filtered_img
|
return filtered_img
|
||||||
|
|
||||||
|
|
||||||
|
@ -25,6 +56,30 @@ def gaussian(x, y, sigmaX, sigmaY, meanX, meanY):
|
||||||
# create a gaussian kernel of arbitrary size
|
# create a gaussian kernel of arbitrary size
|
||||||
def createGaussianKernel(kSize, sigma=None):
|
def createGaussianKernel(kSize, sigma=None):
|
||||||
kernel = np.zeros((kSize, kSize))
|
kernel = np.zeros((kSize, kSize))
|
||||||
|
|
||||||
|
stdev = math.floor(kSize/2)
|
||||||
|
stdev2 = stdev * stdev
|
||||||
|
factor = 1.0/(stdev2*2*math.pi)
|
||||||
|
|
||||||
|
sum = 0.0
|
||||||
|
|
||||||
|
for x in range(kSize):
|
||||||
|
xm = x - kSize/2
|
||||||
|
xsum = xm * xm / stdev2
|
||||||
|
|
||||||
|
for y in range(kSize):
|
||||||
|
ym = y - kSize/2
|
||||||
|
ysum = ym * ym / stdev2
|
||||||
|
|
||||||
|
kernel[x][y] = math.exp((xsum + ysum) * -0.5) * factor
|
||||||
|
sum += kernel[x][y]
|
||||||
|
|
||||||
|
# Normalize gaussian kernel in order not minimize power loss:
|
||||||
|
# https://stackoverflow.com/a/61355383
|
||||||
|
for x in range(kSize):
|
||||||
|
for y in range(kSize):
|
||||||
|
kernel[x][y] /= sum
|
||||||
|
|
||||||
return kernel
|
return kernel
|
||||||
|
|
||||||
|
|
||||||
|
@ -42,6 +97,28 @@ def createSobelYKernel():
|
||||||
|
|
||||||
def applyKernelInSpatialDomain(img, kernel):
|
def applyKernelInSpatialDomain(img, kernel):
|
||||||
filtered_img = img.copy()
|
filtered_img = img.copy()
|
||||||
|
|
||||||
|
width, height = kernel.shape
|
||||||
|
|
||||||
|
for x in range(0, img.shape[0]):
|
||||||
|
for y in range(0, img.shape[1]):
|
||||||
|
|
||||||
|
filtered_img[x][y] = np.zeros([3])
|
||||||
|
|
||||||
|
for u in range(0, width):
|
||||||
|
s = x + u - int(width/2)
|
||||||
|
|
||||||
|
for v in range(0, height):
|
||||||
|
t = y + v - int(height/2)
|
||||||
|
|
||||||
|
color = np.zeros([3])
|
||||||
|
if t >= 0 and t < img.shape[1] and s >= 0 and s < img.shape[0]:
|
||||||
|
color = img[s][t]
|
||||||
|
|
||||||
|
filtered_img[x][y][0] += kernel[u][v] * color[0]
|
||||||
|
filtered_img[x][y][1] += kernel[u][v] * color[1]
|
||||||
|
filtered_img[x][y][2] += kernel[u][v] * color[2]
|
||||||
|
|
||||||
return filtered_img
|
return filtered_img
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -117,32 +117,32 @@ class MainController:
|
||||||
def apply_gaussian_filter(self, kernel_size):
|
def apply_gaussian_filter(self, kernel_size):
|
||||||
kernel = IF.createGaussianKernel(kernel_size)
|
kernel = IF.createGaussianKernel(kernel_size)
|
||||||
img = IF.applyKernelInSpatialDomain(self._model.input_image, kernel)
|
img = IF.applyKernelInSpatialDomain(self._model.input_image, kernel)
|
||||||
self._model.image = Utilities.ensure_three_channel_grayscale_image(img)
|
self._model.image = img
|
||||||
|
|
||||||
def apply_moving_avg_filter(self, kernel_size):
|
def apply_moving_avg_filter(self, kernel_size):
|
||||||
kernel = IF.createMovingAverageKernel(kernel_size)
|
kernel = IF.createMovingAverageKernel(kernel_size)
|
||||||
img = IF.applyKernelInSpatialDomain(self._model.input_image, kernel)
|
img = IF.applyKernelInSpatialDomain(self._model.input_image, kernel)
|
||||||
self._model.image = Utilities.ensure_three_channel_grayscale_image(img)
|
self._model.image = img
|
||||||
|
|
||||||
def apply_moving_avg_filter_integral(self, kernel_size):
|
def apply_moving_avg_filter_integral(self, kernel_size):
|
||||||
img = IF.applyMovingAverageFilterWithIntegralImage(
|
img = IF.applyMovingAverageFilterWithIntegralImage(
|
||||||
self._model.input_image, kernel_size
|
self._model.input_image, kernel_size
|
||||||
)
|
)
|
||||||
self._model.image = Utilities.ensure_three_channel_grayscale_image(img)
|
self._model.image = img
|
||||||
|
|
||||||
def apply_median_filter(self, kernel_size):
|
def apply_median_filter(self, kernel_size):
|
||||||
img = IF.applyMedianFilter(self._model.input_image, kernel_size)
|
img = IF.applyMedianFilter(self._model.input_image, kernel_size)
|
||||||
self._model.image = Utilities.ensure_three_channel_grayscale_image(img)
|
self._model.image = img
|
||||||
|
|
||||||
def apply_filter_sobelX(self):
|
def apply_filter_sobelX(self):
|
||||||
kernel = IF.createSobelXKernel()
|
kernel = IF.createSobelXKernel()
|
||||||
img = IF.applyKernelInSpatialDomain(self._model.input_image, kernel)
|
img = IF.applyKernelInSpatialDomain(self._model.input_image, kernel)
|
||||||
self._model.image = Utilities.ensure_three_channel_grayscale_image(img)
|
self._model.image = img
|
||||||
|
|
||||||
def apply_filter_sobelY(self):
|
def apply_filter_sobelY(self):
|
||||||
kernel = IF.createSobelYKernel()
|
kernel = IF.createSobelYKernel()
|
||||||
img = IF.applyKernelInSpatialDomain(self._model.input_image, kernel)
|
img = IF.applyKernelInSpatialDomain(self._model.input_image, kernel)
|
||||||
self._model.image = Utilities.ensure_three_channel_grayscale_image(img)
|
self._model.image = img
|
||||||
|
|
||||||
def run_runtime_evaluation(self):
|
def run_runtime_evaluation(self):
|
||||||
IF.run_runtime_evaluation(self._model.input_image)
|
IF.run_runtime_evaluation(self._model.input_image)
|
||||||
|
|
|
@ -57,5 +57,4 @@ class ImageModel(QObject):
|
||||||
|
|
||||||
def load_rgb_image(self, path):
|
def load_rgb_image(self, path):
|
||||||
image = cv2.imread(path, 1)
|
image = cv2.imread(path, 1)
|
||||||
# image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
|
||||||
self.image = image
|
self.image = image
|
||||||
|
|
Loading…
Reference in New Issue