Add median filter

This commit is contained in:
Sven Vogel 2025-02-26 11:26:59 +01:00
parent 4d60cfc88a
commit 49de39883b
4 changed files with 231 additions and 9 deletions

View File

@ -1,12 +1,23 @@
import cv2
import numpy as np
import Utilities
import math
MAX_LUM_VALUES = 256
# Task 1
# function to stretch an image
def stretchHistogram(img):
result = img.copy()
grayscale = getLuminance(img)
hist = calculateHistogram(grayscale, MAX_LUM_VALUES)
minPos, maxPos = findMinMaxPos(hist)
for x in range(0, img.shape[0]):
for y in range(0, img.shape[1]):
result[x][y] = (grayscale[x][y] - minPos) / (maxPos - minPos) * 255.0
return result
@ -14,6 +25,25 @@ def stretchHistogram(img):
# function to equalize an image
def equalizeHistogram(img):
result = img.copy()
grayscale = getLuminance(img)
hist = calculateHistogram(grayscale, MAX_LUM_VALUES)
minPos, maxPos = findMinMaxPos(hist)
# Precompute integral of histogram from left to right.
sum = 0
integral = []
for i in range(0, hist.shape[0]):
sum += hist[i]
integral.append(sum)
for x in range(0, img.shape[0]):
for y in range(0, img.shape[1]):
# Compute histogram value of pixel.
bin = int(img[x][y][0] / 255.0 * (MAX_LUM_VALUES - 1))
# Equalize pixel.
result[x][y] = (255.0 - 1.0) / (img.shape[0] * img.shape[1]) * integral[bin]
return result
@ -21,6 +51,18 @@ def equalizeHistogram(img):
# function to apply a look-up table onto an image
def applyLUT(img, LUT):
result = img.copy()
grayscale = getLuminance(img)
for x in range(0, img.shape[0]):
for y in range(0, img.shape[1]):
# Compute histogram value of pixel.
bin = int(grayscale[x][y][0] / 255.0 * (MAX_LUM_VALUES - 1))
result[x][y][0] = LUT[bin]
result[x][y][1] = LUT[bin]
result[x][y][2] = LUT[bin]
return result
@ -29,6 +71,17 @@ def applyLUT(img, LUT):
def findMinMaxPos(histogram):
minPos = 0
maxPos = 255
for x in range(0, histogram.shape[0]):
if histogram[x] > 0:
minPos = x
break
for x in range(histogram.shape[0] - 1, 0):
if histogram[x] > 0:
maxPos = x
break
return minPos, maxPos
@ -37,24 +90,117 @@ def findMinMaxPos(histogram):
def calculateHistogram(img, nrBins):
# create histogram vector
histogram = np.zeros([nrBins], dtype=int)
for x in range(0, img.shape[0]):
for y in range(0, img.shape[1]):
bin = int(img[x][y][0] / 255.0 * (nrBins - 1))
histogram[bin] = histogram[bin] + 1
return histogram
def apply_log(img):
def luminanceD65(rgb: np.ndarray) -> np.float64:
"""
Compute the luminance value of the specified linear RGB values
according to the D65 white point.
@param rgb(np.ndarray): sRGB image
@returns The luminance value
"""
return np.float64(rgb @ [0.2126, 0.7152, 0.0722])
def getLuminance(img):
result = img.copy()
for x in range(0, img.shape[0]):
for y in range(0, img.shape[1]):
lum = luminanceD65(img[x][y])
result[x][y][0] = lum
result[x][y][1] = lum
result[x][y][2] = lum
return result
def apply_log(img):
grayscale = getLuminance(img)
result = img.copy()
# Logarithmic scale factor.
LOG_SCALE_FACTOR = 2.0
for x in range(0, img.shape[0]):
for y in range(0, img.shape[1]):
# Compute logarithmically scaled D65 luminace
# and clamp result to be smaller 255.
lum = min(255,
math.log(grayscale[x][y][0]/255.0 + 1)
* 255.0 * LOG_SCALE_FACTOR)
result[x][y][0] = lum
result[x][y][1] = lum
result[x][y][2] = lum
return result
def apply_exp(img):
grayscale = getLuminance(img)
result = img.copy()
# Logarithmic scale factor.
EXP_SCALE_FACTOR = 0.5
for x in range(0, img.shape[0]):
for y in range(0, img.shape[1]):
# Compute logarithmically scaled D65 luminace
# and clamp result to be smaller 255.
lum = min(255,
(math.exp(grayscale[x][y][0]/255.0) - 1)
* 255.0 * EXP_SCALE_FACTOR)
result[x][y][0] = lum
result[x][y][1] = lum
result[x][y][2] = lum
return result
def apply_inverse(img):
grayscale = getLuminance(img)
result = img.copy()
for x in range(0, img.shape[0]):
for y in range(0, img.shape[1]):
# Compute logarithmically scaled D65 luminace
# and clamp result to be smaller 255.
lum = 255.0 - grayscale[x][y][0]
result[x][y][0] = lum
result[x][y][1] = lum
result[x][y][2] = lum
return result
def apply_threshold(img, threshold):
grayscale = getLuminance(img)
result = img.copy()
for x in range(0, img.shape[0]):
for y in range(0, img.shape[1]):
lum = 0
if grayscale[x][y][0] >= threshold:
lum = 255
result[x][y][0] = lum
result[x][y][1] = lum
result[x][y][2] = lum
return result

View File

@ -2,12 +2,43 @@ import numpy as np
import matplotlib.pyplot as plt
import datetime as dt
import cv2
from numpy._core.numeric import ndarray
import Utilities
import math
def _getChannelMedian(values: list[list[int]], channel: int) -> int:
channelValues = list(map(lambda rgb: rgb[channel], values))
channelValues.sort()
return channelValues[int(len(channelValues)/2)]
# apply median filter
def applyMedianFilter(img, kSize):
def applyMedianFilter(img: ndarray, kSize: int):
filtered_img = img.copy()
for x in range(0, img.shape[0]):
for y in range(0, img.shape[1]):
values = []
for u in range(int(-kSize/2), int(kSize/2)+1):
s = x + u
if s < 0 or s >= img.shape[0]:
continue
for v in range(int(-kSize/2), int(kSize/2)+1):
t = y + v
if t < 0 or t >= img.shape[1]:
continue
values.append(img[s][t])
if len(values) > 0:
filtered_img[x][y] = [
_getChannelMedian(values, 0),
_getChannelMedian(values, 1),
_getChannelMedian(values, 2)
]
return filtered_img
@ -25,6 +56,30 @@ def gaussian(x, y, sigmaX, sigmaY, meanX, meanY):
# create a gaussian kernel of arbitrary size
def createGaussianKernel(kSize, sigma=None):
kernel = np.zeros((kSize, kSize))
stdev = math.floor(kSize/2)
stdev2 = stdev * stdev
factor = 1.0/(stdev2*2*math.pi)
sum = 0.0
for x in range(kSize):
xm = x - kSize/2
xsum = xm * xm / stdev2
for y in range(kSize):
ym = y - kSize/2
ysum = ym * ym / stdev2
kernel[x][y] = math.exp((xsum + ysum) * -0.5) * factor
sum += kernel[x][y]
# Normalize gaussian kernel in order not minimize power loss:
# https://stackoverflow.com/a/61355383
for x in range(kSize):
for y in range(kSize):
kernel[x][y] /= sum
return kernel
@ -42,6 +97,28 @@ def createSobelYKernel():
def applyKernelInSpatialDomain(img, kernel):
filtered_img = img.copy()
width, height = kernel.shape
for x in range(0, img.shape[0]):
for y in range(0, img.shape[1]):
filtered_img[x][y] = np.zeros([3])
for u in range(0, width):
s = x + u - int(width/2)
for v in range(0, height):
t = y + v - int(height/2)
color = np.zeros([3])
if t >= 0 and t < img.shape[1] and s >= 0 and s < img.shape[0]:
color = img[s][t]
filtered_img[x][y][0] += kernel[u][v] * color[0]
filtered_img[x][y][1] += kernel[u][v] * color[1]
filtered_img[x][y][2] += kernel[u][v] * color[2]
return filtered_img

View File

@ -117,32 +117,32 @@ class MainController:
def apply_gaussian_filter(self, kernel_size):
kernel = IF.createGaussianKernel(kernel_size)
img = IF.applyKernelInSpatialDomain(self._model.input_image, kernel)
self._model.image = Utilities.ensure_three_channel_grayscale_image(img)
self._model.image = img
def apply_moving_avg_filter(self, kernel_size):
kernel = IF.createMovingAverageKernel(kernel_size)
img = IF.applyKernelInSpatialDomain(self._model.input_image, kernel)
self._model.image = Utilities.ensure_three_channel_grayscale_image(img)
self._model.image = img
def apply_moving_avg_filter_integral(self, kernel_size):
img = IF.applyMovingAverageFilterWithIntegralImage(
self._model.input_image, kernel_size
)
self._model.image = Utilities.ensure_three_channel_grayscale_image(img)
self._model.image = img
def apply_median_filter(self, kernel_size):
img = IF.applyMedianFilter(self._model.input_image, kernel_size)
self._model.image = Utilities.ensure_three_channel_grayscale_image(img)
self._model.image = img
def apply_filter_sobelX(self):
kernel = IF.createSobelXKernel()
img = IF.applyKernelInSpatialDomain(self._model.input_image, kernel)
self._model.image = Utilities.ensure_three_channel_grayscale_image(img)
self._model.image = img
def apply_filter_sobelY(self):
kernel = IF.createSobelYKernel()
img = IF.applyKernelInSpatialDomain(self._model.input_image, kernel)
self._model.image = Utilities.ensure_three_channel_grayscale_image(img)
self._model.image = img
def run_runtime_evaluation(self):
IF.run_runtime_evaluation(self._model.input_image)

View File

@ -57,5 +57,4 @@ class ImageModel(QObject):
def load_rgb_image(self, path):
image = cv2.imread(path, 1)
# image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
self.image = image