diff --git a/src/ImageFiltering.py b/src/ImageFiltering.py index 0080547..ff051ee 100644 --- a/src/ImageFiltering.py +++ b/src/ImageFiltering.py @@ -2,12 +2,43 @@ import numpy as np import matplotlib.pyplot as plt import datetime as dt import cv2 +from numpy._core.numeric import ndarray import Utilities +import math +def _getChannelMedian(values: list[list[int]], channel: int) -> int: + channelValues = list(map(lambda rgb: rgb[channel], values)) + channelValues.sort() + return channelValues[int(len(channelValues)/2)] # apply median filter -def applyMedianFilter(img, kSize): +def applyMedianFilter(img: ndarray, kSize: int): filtered_img = img.copy() + + for x in range(0, img.shape[0]): + for y in range(0, img.shape[1]): + + values = [] + + for u in range(int(-kSize/2), int(kSize/2)+1): + s = x + u + if s < 0 or s >= img.shape[0]: + continue + + for v in range(int(-kSize/2), int(kSize/2)+1): + t = y + v + if t < 0 or t >= img.shape[1]: + continue + + values.append(img[s][t]) + + if len(values) > 0: + filtered_img[x][y] = [ + _getChannelMedian(values, 0), + _getChannelMedian(values, 1), + _getChannelMedian(values, 2) + ] + return filtered_img @@ -25,6 +56,30 @@ def gaussian(x, y, sigmaX, sigmaY, meanX, meanY): # create a gaussian kernel of arbitrary size def createGaussianKernel(kSize, sigma=None): kernel = np.zeros((kSize, kSize)) + + stdev = math.floor(kSize/2) + stdev2 = stdev * stdev + factor = 1.0/(stdev2*2*math.pi) + + sum = 0.0 + + for x in range(kSize): + xm = x - kSize/2 + xsum = xm * xm / stdev2 + + for y in range(kSize): + ym = y - kSize/2 + ysum = ym * ym / stdev2 + + kernel[x][y] = math.exp((xsum + ysum) * -0.5) * factor + sum += kernel[x][y] + + # Normalize gaussian kernel in order not minimize power loss: + # https://stackoverflow.com/a/61355383 + for x in range(kSize): + for y in range(kSize): + kernel[x][y] /= sum + return kernel @@ -42,6 +97,28 @@ def createSobelYKernel(): def applyKernelInSpatialDomain(img, kernel): filtered_img = img.copy() + + width, height = kernel.shape + + for x in range(0, img.shape[0]): + for y in range(0, img.shape[1]): + + filtered_img[x][y] = np.zeros([3]) + + for u in range(0, width): + s = x + u - int(width/2) + + for v in range(0, height): + t = y + v - int(height/2) + + color = np.zeros([3]) + if t >= 0 and t < img.shape[1] and s >= 0 and s < img.shape[0]: + color = img[s][t] + + filtered_img[x][y][0] += kernel[u][v] * color[0] + filtered_img[x][y][1] += kernel[u][v] * color[1] + filtered_img[x][y][2] += kernel[u][v] * color[2] + return filtered_img diff --git a/src/controllers.py b/src/controllers.py index c95fe75..969817d 100755 --- a/src/controllers.py +++ b/src/controllers.py @@ -117,32 +117,32 @@ class MainController: def apply_gaussian_filter(self, kernel_size): kernel = IF.createGaussianKernel(kernel_size) img = IF.applyKernelInSpatialDomain(self._model.input_image, kernel) - self._model.image = Utilities.ensure_three_channel_grayscale_image(img) + self._model.image = img def apply_moving_avg_filter(self, kernel_size): kernel = IF.createMovingAverageKernel(kernel_size) img = IF.applyKernelInSpatialDomain(self._model.input_image, kernel) - self._model.image = Utilities.ensure_three_channel_grayscale_image(img) + self._model.image = img def apply_moving_avg_filter_integral(self, kernel_size): img = IF.applyMovingAverageFilterWithIntegralImage( self._model.input_image, kernel_size ) - self._model.image = Utilities.ensure_three_channel_grayscale_image(img) + self._model.image = img def apply_median_filter(self, kernel_size): img = IF.applyMedianFilter(self._model.input_image, kernel_size) - self._model.image = Utilities.ensure_three_channel_grayscale_image(img) + self._model.image = img def apply_filter_sobelX(self): kernel = IF.createSobelXKernel() img = IF.applyKernelInSpatialDomain(self._model.input_image, kernel) - self._model.image = Utilities.ensure_three_channel_grayscale_image(img) + self._model.image = img def apply_filter_sobelY(self): kernel = IF.createSobelYKernel() img = IF.applyKernelInSpatialDomain(self._model.input_image, kernel) - self._model.image = Utilities.ensure_three_channel_grayscale_image(img) + self._model.image = img def run_runtime_evaluation(self): IF.run_runtime_evaluation(self._model.input_image) diff --git a/src/models.py b/src/models.py index 3b30574..b75ae7c 100755 --- a/src/models.py +++ b/src/models.py @@ -57,5 +57,4 @@ class ImageModel(QObject): def load_rgb_image(self, path): image = cv2.imread(path, 1) - # image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) self.image = image