feat: exercise 2
This commit is contained in:
parent
4d60cfc88a
commit
d87bfec123
|
@ -1,12 +1,23 @@
|
|||
import cv2
|
||||
import numpy as np
|
||||
import Utilities
|
||||
import math
|
||||
|
||||
MAX_LUM_VALUES = 256
|
||||
|
||||
# Task 1
|
||||
# function to stretch an image
|
||||
def stretchHistogram(img):
|
||||
result = img.copy()
|
||||
|
||||
grayscale = getLuminance(img)
|
||||
hist = calculateHistogram(grayscale, MAX_LUM_VALUES)
|
||||
minPos, maxPos = findMinMaxPos(hist)
|
||||
|
||||
for x in range(0, img.shape[0]):
|
||||
for y in range(0, img.shape[1]):
|
||||
result[x][y] = (grayscale[x][y] - minPos) / (maxPos - minPos) * 255.0
|
||||
|
||||
return result
|
||||
|
||||
|
||||
|
@ -14,6 +25,25 @@ def stretchHistogram(img):
|
|||
# function to equalize an image
|
||||
def equalizeHistogram(img):
|
||||
result = img.copy()
|
||||
|
||||
grayscale = getLuminance(img)
|
||||
hist = calculateHistogram(grayscale, MAX_LUM_VALUES)
|
||||
minPos, maxPos = findMinMaxPos(hist)
|
||||
|
||||
# Precompute integral of histogram from left to right.
|
||||
sum = 0
|
||||
integral = []
|
||||
for i in range(0, hist.shape[0]):
|
||||
sum += hist[i]
|
||||
integral.append(sum)
|
||||
|
||||
for x in range(0, img.shape[0]):
|
||||
for y in range(0, img.shape[1]):
|
||||
# Compute histogram value of pixel.
|
||||
bin = int(img[x][y][0] / 255.0 * (MAX_LUM_VALUES - 1))
|
||||
# Equalize pixel.
|
||||
result[x][y] = (255.0 - 1.0) / (img.shape[0] * img.shape[1]) * integral[bin]
|
||||
|
||||
return result
|
||||
|
||||
|
||||
|
@ -21,6 +51,18 @@ def equalizeHistogram(img):
|
|||
# function to apply a look-up table onto an image
|
||||
def applyLUT(img, LUT):
|
||||
result = img.copy()
|
||||
|
||||
grayscale = getLuminance(img)
|
||||
|
||||
for x in range(0, img.shape[0]):
|
||||
for y in range(0, img.shape[1]):
|
||||
# Compute histogram value of pixel.
|
||||
bin = int(grayscale[x][y][0] / 255.0 * (MAX_LUM_VALUES - 1))
|
||||
|
||||
result[x][y][0] = LUT[bin]
|
||||
result[x][y][1] = LUT[bin]
|
||||
result[x][y][2] = LUT[bin]
|
||||
|
||||
return result
|
||||
|
||||
|
||||
|
@ -29,6 +71,17 @@ def applyLUT(img, LUT):
|
|||
def findMinMaxPos(histogram):
|
||||
minPos = 0
|
||||
maxPos = 255
|
||||
|
||||
for x in range(0, histogram.shape[0]):
|
||||
if histogram[x] > 0:
|
||||
minPos = x
|
||||
break
|
||||
|
||||
for x in range(histogram.shape[0] - 1, 0):
|
||||
if histogram[x] > 0:
|
||||
maxPos = x
|
||||
break
|
||||
|
||||
return minPos, maxPos
|
||||
|
||||
|
||||
|
@ -37,24 +90,117 @@ def findMinMaxPos(histogram):
|
|||
def calculateHistogram(img, nrBins):
|
||||
# create histogram vector
|
||||
histogram = np.zeros([nrBins], dtype=int)
|
||||
|
||||
for x in range(0, img.shape[0]):
|
||||
for y in range(0, img.shape[1]):
|
||||
bin = int(img[x][y][0] / 255.0 * (nrBins - 1))
|
||||
histogram[bin] = histogram[bin] + 1
|
||||
|
||||
return histogram
|
||||
|
||||
|
||||
def apply_log(img):
|
||||
def luminanceD65(rgb: np.ndarray) -> np.float64:
|
||||
"""
|
||||
Compute the luminance value of the specified linear RGB values
|
||||
according to the D65 white point.
|
||||
|
||||
@param rgb(np.ndarray): sRGB image
|
||||
|
||||
@returns The luminance value
|
||||
"""
|
||||
return np.float64(rgb @ [0.2126, 0.7152, 0.0722])
|
||||
|
||||
|
||||
def getLuminance(img):
|
||||
result = img.copy()
|
||||
|
||||
for x in range(0, img.shape[0]):
|
||||
for y in range(0, img.shape[1]):
|
||||
lum = luminanceD65(img[x][y])
|
||||
result[x][y][0] = lum
|
||||
result[x][y][1] = lum
|
||||
result[x][y][2] = lum
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def apply_log(img):
|
||||
grayscale = getLuminance(img)
|
||||
result = img.copy()
|
||||
|
||||
# Logarithmic scale factor.
|
||||
LOG_SCALE_FACTOR = 2.0
|
||||
|
||||
for x in range(0, img.shape[0]):
|
||||
for y in range(0, img.shape[1]):
|
||||
|
||||
# Compute logarithmically scaled D65 luminace
|
||||
# and clamp result to be smaller 255.
|
||||
lum = min(255,
|
||||
math.log(grayscale[x][y][0]/255.0 + 1)
|
||||
* 255.0 * LOG_SCALE_FACTOR)
|
||||
|
||||
result[x][y][0] = lum
|
||||
result[x][y][1] = lum
|
||||
result[x][y][2] = lum
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def apply_exp(img):
|
||||
grayscale = getLuminance(img)
|
||||
result = img.copy()
|
||||
|
||||
# Logarithmic scale factor.
|
||||
EXP_SCALE_FACTOR = 0.5
|
||||
|
||||
for x in range(0, img.shape[0]):
|
||||
for y in range(0, img.shape[1]):
|
||||
|
||||
# Compute logarithmically scaled D65 luminace
|
||||
# and clamp result to be smaller 255.
|
||||
lum = min(255,
|
||||
(math.exp(grayscale[x][y][0]/255.0) - 1)
|
||||
* 255.0 * EXP_SCALE_FACTOR)
|
||||
|
||||
result[x][y][0] = lum
|
||||
result[x][y][1] = lum
|
||||
result[x][y][2] = lum
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def apply_inverse(img):
|
||||
grayscale = getLuminance(img)
|
||||
result = img.copy()
|
||||
|
||||
for x in range(0, img.shape[0]):
|
||||
for y in range(0, img.shape[1]):
|
||||
|
||||
# Compute logarithmically scaled D65 luminace
|
||||
# and clamp result to be smaller 255.
|
||||
lum = 255.0 - grayscale[x][y][0]
|
||||
|
||||
result[x][y][0] = lum
|
||||
result[x][y][1] = lum
|
||||
result[x][y][2] = lum
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def apply_threshold(img, threshold):
|
||||
grayscale = getLuminance(img)
|
||||
result = img.copy()
|
||||
|
||||
for x in range(0, img.shape[0]):
|
||||
for y in range(0, img.shape[1]):
|
||||
|
||||
lum = 0
|
||||
if grayscale[x][y][0] >= threshold:
|
||||
lum = 255
|
||||
|
||||
result[x][y][0] = lum
|
||||
result[x][y][1] = lum
|
||||
result[x][y][2] = lum
|
||||
|
||||
return result
|
||||
|
|
Loading…
Reference in New Issue