Merge branch 'changes'

This commit is contained in:
Sven Vogel 2025-02-26 11:29:35 +01:00
commit 147d8dbaa4
3 changed files with 84 additions and 8 deletions

View File

@ -2,12 +2,43 @@ import numpy as np
import matplotlib.pyplot as plt
import datetime as dt
import cv2
from numpy._core.numeric import ndarray
import Utilities
import math
def _getChannelMedian(values: list[list[int]], channel: int) -> int:
channelValues = list(map(lambda rgb: rgb[channel], values))
channelValues.sort()
return channelValues[int(len(channelValues)/2)]
# apply median filter
def applyMedianFilter(img, kSize):
def applyMedianFilter(img: ndarray, kSize: int):
filtered_img = img.copy()
for x in range(0, img.shape[0]):
for y in range(0, img.shape[1]):
values = []
for u in range(int(-kSize/2), int(kSize/2)+1):
s = x + u
if s < 0 or s >= img.shape[0]:
continue
for v in range(int(-kSize/2), int(kSize/2)+1):
t = y + v
if t < 0 or t >= img.shape[1]:
continue
values.append(img[s][t])
if len(values) > 0:
filtered_img[x][y] = [
_getChannelMedian(values, 0),
_getChannelMedian(values, 1),
_getChannelMedian(values, 2)
]
return filtered_img
@ -25,6 +56,30 @@ def gaussian(x, y, sigmaX, sigmaY, meanX, meanY):
# create a gaussian kernel of arbitrary size
def createGaussianKernel(kSize, sigma=None):
kernel = np.zeros((kSize, kSize))
stdev = math.floor(kSize/2)
stdev2 = stdev * stdev
factor = 1.0/(stdev2*2*math.pi)
sum = 0.0
for x in range(kSize):
xm = x - kSize/2
xsum = xm * xm / stdev2
for y in range(kSize):
ym = y - kSize/2
ysum = ym * ym / stdev2
kernel[x][y] = math.exp((xsum + ysum) * -0.5) * factor
sum += kernel[x][y]
# Normalize gaussian kernel in order not minimize power loss:
# https://stackoverflow.com/a/61355383
for x in range(kSize):
for y in range(kSize):
kernel[x][y] /= sum
return kernel
@ -42,6 +97,28 @@ def createSobelYKernel():
def applyKernelInSpatialDomain(img, kernel):
filtered_img = img.copy()
width, height = kernel.shape
for x in range(0, img.shape[0]):
for y in range(0, img.shape[1]):
filtered_img[x][y] = np.zeros([3])
for u in range(0, width):
s = x + u - int(width/2)
for v in range(0, height):
t = y + v - int(height/2)
color = np.zeros([3])
if t >= 0 and t < img.shape[1] and s >= 0 and s < img.shape[0]:
color = img[s][t]
filtered_img[x][y][0] += kernel[u][v] * color[0]
filtered_img[x][y][1] += kernel[u][v] * color[1]
filtered_img[x][y][2] += kernel[u][v] * color[2]
return filtered_img

View File

@ -117,32 +117,32 @@ class MainController:
def apply_gaussian_filter(self, kernel_size):
kernel = IF.createGaussianKernel(kernel_size)
img = IF.applyKernelInSpatialDomain(self._model.input_image, kernel)
self._model.image = Utilities.ensure_three_channel_grayscale_image(img)
self._model.image = img
def apply_moving_avg_filter(self, kernel_size):
kernel = IF.createMovingAverageKernel(kernel_size)
img = IF.applyKernelInSpatialDomain(self._model.input_image, kernel)
self._model.image = Utilities.ensure_three_channel_grayscale_image(img)
self._model.image = img
def apply_moving_avg_filter_integral(self, kernel_size):
img = IF.applyMovingAverageFilterWithIntegralImage(
self._model.input_image, kernel_size
)
self._model.image = Utilities.ensure_three_channel_grayscale_image(img)
self._model.image = img
def apply_median_filter(self, kernel_size):
img = IF.applyMedianFilter(self._model.input_image, kernel_size)
self._model.image = Utilities.ensure_three_channel_grayscale_image(img)
self._model.image = img
def apply_filter_sobelX(self):
kernel = IF.createSobelXKernel()
img = IF.applyKernelInSpatialDomain(self._model.input_image, kernel)
self._model.image = Utilities.ensure_three_channel_grayscale_image(img)
self._model.image = img
def apply_filter_sobelY(self):
kernel = IF.createSobelYKernel()
img = IF.applyKernelInSpatialDomain(self._model.input_image, kernel)
self._model.image = Utilities.ensure_three_channel_grayscale_image(img)
self._model.image = img
def run_runtime_evaluation(self):
IF.run_runtime_evaluation(self._model.input_image)

View File

@ -57,5 +57,4 @@ class ImageModel(QObject):
def load_rgb_image(self, path):
image = cv2.imread(path, 1)
# image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
self.image = image