From d87bfec123f6c2fda73073998843441690995284 Mon Sep 17 00:00:00 2001 From: servostar Date: Tue, 4 Feb 2025 21:19:33 +0100 Subject: [PATCH] feat: exercise 2 --- src/HistogramManipulation.py | 148 ++++++++++++++++++++++++++++++++++- 1 file changed, 147 insertions(+), 1 deletion(-) diff --git a/src/HistogramManipulation.py b/src/HistogramManipulation.py index b39544c..0b96209 100755 --- a/src/HistogramManipulation.py +++ b/src/HistogramManipulation.py @@ -1,12 +1,23 @@ import cv2 import numpy as np import Utilities +import math +MAX_LUM_VALUES = 256 # Task 1 # function to stretch an image def stretchHistogram(img): result = img.copy() + + grayscale = getLuminance(img) + hist = calculateHistogram(grayscale, MAX_LUM_VALUES) + minPos, maxPos = findMinMaxPos(hist) + + for x in range(0, img.shape[0]): + for y in range(0, img.shape[1]): + result[x][y] = (grayscale[x][y] - minPos) / (maxPos - minPos) * 255.0 + return result @@ -14,6 +25,25 @@ def stretchHistogram(img): # function to equalize an image def equalizeHistogram(img): result = img.copy() + + grayscale = getLuminance(img) + hist = calculateHistogram(grayscale, MAX_LUM_VALUES) + minPos, maxPos = findMinMaxPos(hist) + + # Precompute integral of histogram from left to right. + sum = 0 + integral = [] + for i in range(0, hist.shape[0]): + sum += hist[i] + integral.append(sum) + + for x in range(0, img.shape[0]): + for y in range(0, img.shape[1]): + # Compute histogram value of pixel. + bin = int(img[x][y][0] / 255.0 * (MAX_LUM_VALUES - 1)) + # Equalize pixel. + result[x][y] = (255.0 - 1.0) / (img.shape[0] * img.shape[1]) * integral[bin] + return result @@ -21,6 +51,18 @@ def equalizeHistogram(img): # function to apply a look-up table onto an image def applyLUT(img, LUT): result = img.copy() + + grayscale = getLuminance(img) + + for x in range(0, img.shape[0]): + for y in range(0, img.shape[1]): + # Compute histogram value of pixel. + bin = int(grayscale[x][y][0] / 255.0 * (MAX_LUM_VALUES - 1)) + + result[x][y][0] = LUT[bin] + result[x][y][1] = LUT[bin] + result[x][y][2] = LUT[bin] + return result @@ -29,6 +71,17 @@ def applyLUT(img, LUT): def findMinMaxPos(histogram): minPos = 0 maxPos = 255 + + for x in range(0, histogram.shape[0]): + if histogram[x] > 0: + minPos = x + break + + for x in range(histogram.shape[0] - 1, 0): + if histogram[x] > 0: + maxPos = x + break + return minPos, maxPos @@ -37,24 +90,117 @@ def findMinMaxPos(histogram): def calculateHistogram(img, nrBins): # create histogram vector histogram = np.zeros([nrBins], dtype=int) + + for x in range(0, img.shape[0]): + for y in range(0, img.shape[1]): + bin = int(img[x][y][0] / 255.0 * (nrBins - 1)) + histogram[bin] = histogram[bin] + 1 + return histogram -def apply_log(img): +def luminanceD65(rgb: np.ndarray) -> np.float64: + """ + Compute the luminance value of the specified linear RGB values + according to the D65 white point. + + @param rgb(np.ndarray): sRGB image + + @returns The luminance value + """ + return np.float64(rgb @ [0.2126, 0.7152, 0.0722]) + + +def getLuminance(img): result = img.copy() + + for x in range(0, img.shape[0]): + for y in range(0, img.shape[1]): + lum = luminanceD65(img[x][y]) + result[x][y][0] = lum + result[x][y][1] = lum + result[x][y][2] = lum + + return result + + +def apply_log(img): + grayscale = getLuminance(img) + result = img.copy() + + # Logarithmic scale factor. + LOG_SCALE_FACTOR = 2.0 + + for x in range(0, img.shape[0]): + for y in range(0, img.shape[1]): + + # Compute logarithmically scaled D65 luminace + # and clamp result to be smaller 255. + lum = min(255, + math.log(grayscale[x][y][0]/255.0 + 1) + * 255.0 * LOG_SCALE_FACTOR) + + result[x][y][0] = lum + result[x][y][1] = lum + result[x][y][2] = lum + return result def apply_exp(img): + grayscale = getLuminance(img) result = img.copy() + + # Logarithmic scale factor. + EXP_SCALE_FACTOR = 0.5 + + for x in range(0, img.shape[0]): + for y in range(0, img.shape[1]): + + # Compute logarithmically scaled D65 luminace + # and clamp result to be smaller 255. + lum = min(255, + (math.exp(grayscale[x][y][0]/255.0) - 1) + * 255.0 * EXP_SCALE_FACTOR) + + result[x][y][0] = lum + result[x][y][1] = lum + result[x][y][2] = lum + return result def apply_inverse(img): + grayscale = getLuminance(img) result = img.copy() + + for x in range(0, img.shape[0]): + for y in range(0, img.shape[1]): + + # Compute logarithmically scaled D65 luminace + # and clamp result to be smaller 255. + lum = 255.0 - grayscale[x][y][0] + + result[x][y][0] = lum + result[x][y][1] = lum + result[x][y][2] = lum + return result def apply_threshold(img, threshold): + grayscale = getLuminance(img) result = img.copy() + + for x in range(0, img.shape[0]): + for y in range(0, img.shape[1]): + + lum = 0 + if grayscale[x][y][0] >= threshold: + lum = 255 + + result[x][y][0] = lum + result[x][y][1] = lum + result[x][y][2] = lum + return result