438 lines
14 KiB
Rust
438 lines
14 KiB
Rust
use crate::image::Image;
|
|
use crate::multithreading::{Task, ThreadPool};
|
|
use serde::{Deserialize, Serialize};
|
|
use std::collections::HashMap;
|
|
use std::default::Default;
|
|
use std::fs;
|
|
use std::path::{Path, PathBuf};
|
|
use std::sync::Arc;
|
|
|
|
trait WeightedCmp {
|
|
fn weighted(&self, other: &Self) -> f32;
|
|
}
|
|
|
|
/// Every feature returns a known and sized type
|
|
#[derive(Debug, Clone, Serialize, Deserialize)]
|
|
pub enum FeatureResult {
|
|
/// A boolean. Just a boolean
|
|
Bool(bool),
|
|
/// Signed 32-bit integer
|
|
I32(i32),
|
|
/// 32-bit single precision floating point
|
|
/// can be used for aspect ratio or luminance
|
|
F32(f32),
|
|
/// Vector for nested multidimensional
|
|
Vec(Vec<FeatureResult>),
|
|
/// Standard RGBA color
|
|
Rgba(f32, f32, f32, f32),
|
|
/// Indices intended for the usage in histograms
|
|
Indices(Vec<u64>),
|
|
///A Character :)
|
|
Char(char),
|
|
///A String ;)
|
|
String(String),
|
|
///a f32 between 0 and 1
|
|
Percent(f32),
|
|
}
|
|
|
|
impl Default for FeatureResult {
|
|
fn default() -> Self {
|
|
FeatureResult::Bool(false)
|
|
}
|
|
}
|
|
|
|
/// For some feature return type we want to implement a custom compare function
|
|
/// for example: histograms are compared with cosine similarity
|
|
impl PartialEq for FeatureResult {
|
|
fn eq(&self, other: &Self) -> bool {
|
|
match (self, other) {
|
|
(Self::Bool(l0), Self::Bool(r0)) => l0 == r0,
|
|
(Self::I32(l0), Self::I32(r0)) => l0 == r0,
|
|
(Self::F32(l0), Self::F32(r0)) => l0 == r0,
|
|
(Self::Vec(l0), Self::Vec(r0)) => l0 == r0,
|
|
(Self::Rgba(l0, l1, l2, l3), Self::Rgba(r0, r1, r2, r3)) => {
|
|
l0 == r0 && l1 == r1 && l2 == r2 && l3 == r3
|
|
}
|
|
(Self::Indices(l), Self::Indices(r)) => l == r,
|
|
(Self::Char(l0), Self::Char(r0)) => l0 == r0,
|
|
(Self::String(l), Self::String(r)) => l == r,
|
|
(Self::Percent(l0), Self::Percent(r0)) => l0 == r0,
|
|
_ => false,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl WeightedCmp for FeatureResult {
|
|
fn weighted(&self, other: &Self) -> f32 {
|
|
match (self, other) {
|
|
(Self::Bool(l0), Self::Bool(r0)) => {
|
|
if l0 == r0 {
|
|
1.
|
|
} else {
|
|
0.
|
|
}
|
|
}
|
|
(Self::I32(l0), Self::I32(r0)) => {
|
|
if l0 == r0 {
|
|
1.
|
|
} else {
|
|
0.
|
|
}
|
|
}
|
|
(Self::F32(l0), Self::F32(r0)) => {
|
|
if (l0 - r0).abs() < 1e-4 {
|
|
1.
|
|
} else {
|
|
0.
|
|
}
|
|
}
|
|
(Self::Vec(l), Self::Vec(r)) => {
|
|
if l.len() == r.len() {
|
|
let mut b: f32 = 0.;
|
|
for a in l.iter().enumerate() {
|
|
b += a.1.weighted(&r[a.0]);
|
|
}
|
|
b / l.len() as f32
|
|
} else {
|
|
0.
|
|
}
|
|
}
|
|
(Self::Rgba(l0, l1, l2, _), Self::Rgba(r0, r1, r2,_)) => {
|
|
let lableft = rgb_to_lab(vec![*l0,*l1,*l2]);
|
|
let labright = rgb_to_lab(vec![*r0,*r1,*r2]);
|
|
|
|
let mut result = ((lableft[0]-labright[0])*(lableft[0]-labright[0])
|
|
+(lableft[1]-labright[1])*(lableft[1]-labright[1])
|
|
+(lableft[2]-labright[2])*(lableft[2]-labright[2])).sqrt(); //euclidian distance between two colors: Delta E
|
|
if result > 100. {
|
|
result = 0.;
|
|
}
|
|
else {
|
|
result = 1. - result/100.;
|
|
}
|
|
|
|
result
|
|
}
|
|
(Self::Indices(l), Self::Indices(r)) => {
|
|
let mut up = 0_u64;
|
|
let mut left = 0_u64;
|
|
let mut right = 0_u64;
|
|
for (a,b) in l.iter().zip(r.iter()).map(|(a, b)| (a,b)){
|
|
left += a*a;
|
|
right += b*b;
|
|
up += a*b;
|
|
}
|
|
|
|
|
|
let mut result = up as f32 / ((left * right) as f32).sqrt();//cosines similarity
|
|
|
|
|
|
if result.is_nan() {
|
|
if left == right {
|
|
result = 1.;
|
|
} else {
|
|
result = 0.
|
|
}
|
|
}
|
|
result
|
|
}
|
|
|
|
(Self::Char(l0), Self::Char(r0)) => {
|
|
if l0 == r0 {
|
|
1.
|
|
} else {
|
|
0.
|
|
}
|
|
}
|
|
(Self::String(l0), Self::String(r0)) => {
|
|
if l0 == r0 {
|
|
1.
|
|
} else {
|
|
0.
|
|
}
|
|
}
|
|
(Self::Percent(l0), Self::Percent(r0)) => 1. - (l0 - r0).abs(),
|
|
|
|
_ => 0.,
|
|
}
|
|
}
|
|
}
|
|
|
|
fn rgb_to_lab(rgb: Vec<f32>) -> [f32; 3] {
|
|
let r = rgb[0] / 255.0;
|
|
let g = rgb[1] / 255.0;
|
|
let b = rgb[2] / 255.0;
|
|
|
|
let r = if r > 0.04045 { ((r + 0.055) / 1.055).powf(2.4) } else { r / 12.92 };
|
|
let g = if g > 0.04045 { ((g + 0.055) / 1.055).powf(2.4) } else { g / 12.92 };
|
|
let b = if b > 0.04045 { ((b + 0.055) / 1.055).powf(2.4) } else { b / 12.92 };
|
|
|
|
let x = r * 0.4124 + g * 0.3576 + b * 0.1805;
|
|
let y = r * 0.2126 + g * 0.7152 + b * 0.0722;
|
|
let z = r * 0.0193 + g * 0.1192 + b * 0.9505;
|
|
|
|
let x = x / 0.95047;
|
|
let y = y / 1.0;
|
|
let z = z / 1.08883;
|
|
|
|
let x = if x > 0.008856 { x.powf(1.0 / 3.0) } else { (7.787 * x) + (16.0 / 116.0) };
|
|
let y = if y > 0.008856 { y.powf(1.0 / 3.0) } else { (7.787 * y) + (16.0 / 116.0) };
|
|
let z = if z > 0.008856 { z.powf(1.0 / 3.0) } else { (7.787 * z) + (16.0 / 116.0) };
|
|
|
|
let l = (116.0 * y) - 16.0;
|
|
let a = 500.0 * (x - y);
|
|
let b = 200.0 * (y - z);
|
|
|
|
[l, a, b]
|
|
}
|
|
|
|
|
|
pub type FeatureGenerator = fn(Arc<Image<f32>>) -> (String, FeatureResult);
|
|
|
|
#[derive(Default)]
|
|
pub struct Database {
|
|
images: IndexedImages,
|
|
|
|
/// keep feature generator for the case when we add a new image
|
|
/// this field is not serialized and needs to be wrapped in an option
|
|
generators: Vec<FeatureGenerator>,
|
|
threadpool: ThreadPool<Arc<Image<f32>>, (String, FeatureResult)>,
|
|
}
|
|
|
|
impl Database {
|
|
pub fn search(&self, imagepath: &Path, feature: FeatureGenerator) -> Vec<(PathBuf, f32)> {
|
|
self.images.search(imagepath, feature)
|
|
}
|
|
|
|
///the new function generates a new Database out of a vector of the Paths of the Images and a Vector of features
|
|
pub fn new(imagepaths: &Vec<PathBuf>, features: Vec<FeatureGenerator>) -> Self {
|
|
let mut threadpool = ThreadPool::new();
|
|
Self {
|
|
images: IndexedImages::new(imagepaths, &features, &mut threadpool),
|
|
generators: features,
|
|
threadpool,
|
|
}
|
|
}
|
|
|
|
/// with add_image you can add images in a existing database.
|
|
/// databases from a file are read only
|
|
pub fn add_image(&mut self, path: &Path) {
|
|
if !self.generators.is_empty() {
|
|
self.images
|
|
.add_image(path, &self.generators, &mut self.threadpool)
|
|
} else {
|
|
panic!("database without generator functions is immutable")
|
|
}
|
|
}
|
|
|
|
pub fn from_file(path: &Path) -> Self {
|
|
let filestring = fs::read_to_string(path).expect("can't read that file");
|
|
let images = serde_json::from_str::<IndexedImages>(&filestring)
|
|
.expect("unable to deserialize the file");
|
|
Self {
|
|
images,
|
|
generators: Vec::new(),
|
|
threadpool: ThreadPool::new(),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Serialize, Deserialize, Default, PartialEq, Debug)]
|
|
struct IndexedImages {
|
|
images: HashMap<PathBuf, HashMap<String, FeatureResult>>,
|
|
}
|
|
|
|
impl IndexedImages {
|
|
fn new(
|
|
imagepaths: &Vec<PathBuf>,
|
|
features: &[FeatureGenerator],
|
|
threadpool: &mut ThreadPool<Arc<Image<f32>>, (String, FeatureResult)>,
|
|
) -> Self {
|
|
let mut images_with_feats = HashMap::new();
|
|
|
|
for path in imagepaths {
|
|
let image: Arc<Image<f32>> = Arc::new(Image::default()); //todo!("Image reader function")
|
|
let mut feats = HashMap::new();
|
|
|
|
for generator in features.iter() {
|
|
threadpool.enqueue(Task::new(image.clone(), *generator));
|
|
}
|
|
let vec = threadpool.get_results();
|
|
|
|
for (name, result) in vec {
|
|
feats.insert(name, result);
|
|
}
|
|
|
|
images_with_feats.insert(image.path().clone(), feats);
|
|
}
|
|
|
|
Self {
|
|
images: images_with_feats,
|
|
}
|
|
}
|
|
|
|
fn search(&self, imagepath: &Path, feature: FeatureGenerator) -> Vec<(PathBuf, f32)> {
|
|
let image: Arc<Image<f32>> = Arc::new(Image::default()); //todo!("Image reader function")
|
|
let search_feat = feature(image);
|
|
let mut result: Vec<(PathBuf, f32)> = Vec::new();
|
|
|
|
for image in &self.images {
|
|
for feat in image.1 {
|
|
if search_feat.0 == *feat.0 {
|
|
result.push((image.0.clone(), search_feat.1.weighted(feat.1)));
|
|
}
|
|
}
|
|
}
|
|
result
|
|
}
|
|
|
|
fn add_image(
|
|
&mut self,
|
|
path: &Path,
|
|
generator: &Vec<FeatureGenerator>,
|
|
threadpool: &mut ThreadPool<Arc<Image<f32>>, (String, FeatureResult)>,
|
|
) {
|
|
let image: Arc<Image<f32>> = Arc::new(Image::default()); //todo!("Image reader function")
|
|
let mut feats = HashMap::new();
|
|
|
|
for gen in generator {
|
|
threadpool.enqueue(Task::new(image.clone(), *gen));
|
|
}
|
|
let vec = threadpool.get_results();
|
|
|
|
for (name, result) in vec {
|
|
feats.insert(name, result);
|
|
}
|
|
self.images.insert(image.path().clone(), feats);
|
|
}
|
|
}
|
|
|
|
/// example feature implementation
|
|
#[allow(dead_code)]
|
|
fn average_luminance(image: Arc<Image<f32>>) -> (String, FeatureResult) {
|
|
(String::from("average-brightness"), FeatureResult::F32(0.0))
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
|
|
#[test]
|
|
fn conversion() {
|
|
|
|
let mut images: HashMap<PathBuf, HashMap<String, FeatureResult>> = HashMap::new();
|
|
let mut feat: HashMap<String, FeatureResult> = HashMap::new();
|
|
feat.insert(String::from("average-brightness"), FeatureResult::F32(0.0));
|
|
images.insert(PathBuf::new(), feat);
|
|
let data = IndexedImages { images };
|
|
|
|
let _as_json = serde_json::to_string(&data).expect("couldnt convert");
|
|
println!("{:?}", _as_json);
|
|
let data_after_conversion = serde_json::from_str::<IndexedImages>(&_as_json).expect("couldnt convert from string");
|
|
assert_eq!(data, data_after_conversion);
|
|
}
|
|
|
|
#[test]
|
|
fn cosine_similarity(){
|
|
let vec1 = FeatureResult::Indices(vec!{1, 3, 4});
|
|
let vec2 = FeatureResult::Indices(vec!{1, 3, 4});
|
|
|
|
|
|
assert_eq!(1., vec1.weighted(&vec2)); // both are identical
|
|
let vec2 = FeatureResult::Indices(vec!{0, 0, 0});
|
|
assert_eq!(0., vec1.weighted(&vec2)); // one is 0
|
|
let vec1 = FeatureResult::Indices(vec!{0, 0, 0});
|
|
assert_eq!(1., vec1.weighted(&vec2)); // both are 0
|
|
|
|
assert_eq!(1., vec2.weighted(&vec1)); // it shouldn't change if the Values are switched
|
|
|
|
let vec1 = FeatureResult::Indices(vec!{7, 3, 4});
|
|
let vec2 = FeatureResult::Indices(vec!{1, 5, 2});
|
|
assert_eq!(vec1.weighted(&vec2), vec2.weighted(&vec1));
|
|
println!("{:?}", vec1.weighted(&vec2));
|
|
|
|
|
|
let mut vec1 = vec![5;9999];
|
|
vec1.push( 1);
|
|
let vec1 = FeatureResult::Indices(vec1);
|
|
let vec2 = FeatureResult::Indices(vec!{7;10000});
|
|
println!("{:?}", vec1.weighted(&vec2));
|
|
|
|
|
|
|
|
}
|
|
#[test]
|
|
fn weighted() {
|
|
|
|
let vec1 = FeatureResult::Vec(vec![FeatureResult::Bool(true),
|
|
FeatureResult::Char('c'),
|
|
FeatureResult::Vec(vec![FeatureResult::Percent(0.5)]),
|
|
FeatureResult::F32(44.543) ]);
|
|
|
|
let vec2 = FeatureResult::Vec(vec![FeatureResult::Bool(true),
|
|
FeatureResult::Char('c'),
|
|
FeatureResult::Vec(vec![FeatureResult::Percent(0.5)]),
|
|
FeatureResult::F32(44.543) ]);
|
|
assert_eq!(1., vec2.weighted(&vec1));
|
|
|
|
|
|
let vec2 = FeatureResult::Vec(vec![FeatureResult::Bool(true),
|
|
FeatureResult::Char('c'),
|
|
FeatureResult::F32(44.543) ,
|
|
FeatureResult::Vec(vec![FeatureResult::Percent(0.5)])]);
|
|
assert_eq!(0.5, vec2.weighted(&vec1));
|
|
println!("{:?}", vec1.weighted(&vec2));
|
|
|
|
let value1 = FeatureResult::F32(44.543);
|
|
let value2 = FeatureResult::F32(44.543);
|
|
assert_eq!(1., value1.weighted(&value2));
|
|
|
|
let value1 = FeatureResult::Bool(true);
|
|
let value2 = FeatureResult::Bool(false);
|
|
assert_eq!(0., value1.weighted(&value2));
|
|
|
|
let value1 = FeatureResult::String(String::from("Testing"));
|
|
let value2 = FeatureResult::String(String::from("notTesting"));
|
|
assert_eq!(0., value1.weighted(&value2));
|
|
|
|
|
|
let value2 = FeatureResult::String(String::from("Testing"));
|
|
assert_eq!(1., value1.weighted(&value2)) ;
|
|
|
|
}
|
|
|
|
#[test]
|
|
fn weighted_rgba() {
|
|
let value1 = FeatureResult::Rgba(32.6754,42.432,43.87,255.);
|
|
let value2 = FeatureResult::Rgba(32.6754,42.432,43.87,255.);
|
|
assert_eq!(1., value1.weighted(&value2)) ;
|
|
|
|
let value1 = FeatureResult::Rgba(255.,255.,0.,255.);
|
|
let value2 = FeatureResult::Rgba(0.,0.,0.,255.);
|
|
//assert_eq!(1., value1.weighted(&value2)) ;
|
|
println!("Yellow to Black: {:?}", value1.weighted(&value2));
|
|
|
|
let value1 = FeatureResult::Rgba(255.,255.,0.,255.);
|
|
let value2 = FeatureResult::Rgba(200.,255.,55.,255.);
|
|
//assert_eq!(1., value1.weighted(&value2)) ;
|
|
println!("yellow to light green: {:?}", value1.weighted(&value2));
|
|
|
|
let value1 = FeatureResult::Rgba(3.,8.,255.,255.);
|
|
let value2 = FeatureResult::Rgba(3.,106.,255.,255.);
|
|
//assert_eq!(1., value1.weighted(&value2)) ;
|
|
println!("blue to dark blue: {:?}", value1.weighted(&value2));
|
|
|
|
let value1 = FeatureResult::Rgba(255.,106.,122.,255.);
|
|
let value2 = FeatureResult::Rgba(255.,1.,28.,255.);
|
|
//assert_eq!(1., value1.weighted(&value2)) ;
|
|
println!("Red to light red: {:?}", value1.weighted(&value2));
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
}
|
|
|