Feature extractor (#48)

* Create FeatureTest.rs

* Create mod.rs

* Delete FeatureTest.rs

* Added FeatureExtr

FeatureExtractor provided by Servostar

* Added AverageBrightness Feature

* Added Dimension Compare Feature

* Update mod.rs

* added feature module

---------

Co-authored-by: SirTalksalot75 <132705706+SirTalksalot75@users.noreply.github.com>
This commit is contained in:
teridax 2023-06-18 09:25:38 +00:00 committed by GitHub
parent 7928bf0725
commit f913855fb3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 269 additions and 0 deletions

106
src/Feature/mod.rs Normal file
View File

@ -0,0 +1,106 @@
use std::sync::Arc;
#[derive(Debug, Clone, Serialize, Deserialize)]
enum FeatureResult {
/// A boolean. Just a boolean
Bool(bool),
/// Signed 32-bit integer
I32(i32),
/// 32-bit single precision floating point
/// can be used for aspect ratio or luminance
F32(f32),
/// Vector for nested multidimensional
Vec(Vec<FeatureResult>),
/// Standard RGBA color
RGBA(f32, f32, f32, f32),
/// Indices intended for the usage in historgrams
Indices(Vec<u64>)
}
impl Default for FeatureResult {
fn default() -> Self {
FeatureResult::Bool(false)
}
}
/// For some feature return type we want to implement a custom compare function
/// for example: historgrams are compared with cosine similarity
impl PartialEq for FeatureResult {
fn eq(&self, other: &Self) -> bool {
match (self, other) {
(Self::Bool(l0), Self::Bool(r0)) => l0 == r0,
(Self::I32(l0), Self::I32(r0)) => l0 == r0,
(Self::F32(l0), Self::F32(r0)) => l0 == r0,
(Self::Vec(l0), Self::Vec(r0)) => l0 == r0,
(Self::RGBA(l0, l1, l2, l3), Self::RGBA(r0, r1, r2, r3)) => l0 == r0 && l1 == r1 && l2 == r2 && l3 == r3,
(Self::Indices(_), Self::Indices(_)) => todo!("implement cosine similarity"),
_ => false,
}
}
}
type FeatureGenerator = Box<dyn Fn(crate::Arc<Image<f32>>) -> (String, FeatureResult)>;
#[derive(Serialize, Deserialize, Default)]
struct Database {
images: HashMap<String, HashMap<String, FeatureResult>>,
/// keep feature generator for the case when we add a new image
/// this field is not serialized and needs to be wrapped in an option
#[serde(skip)]
generators: Option<Vec<FeatureGenerator>>
}
impl Database {
pub fn add_feature(&mut self, feature: FeatureGenerator) {
for (path, features) in self.images.iter_mut() {
// compute feature for every image
todo!("run this as a closure parallel with a thread pool");
let (name, res) = feature(todo!("load image from disk"));
features.insert(name, res);
}
if let Some(generators) = self.generators.as_mut() {
generators.push(feature);
} else {
self.generators = Some(vec![feature])
}
}
pub fn add_image(&mut self, path: String) {
let image = todo!("load image from disk");
let mut features = HashMap::new();
if let Some(generators) = self.generators {
for generator in generators.iter() {
let (name, res) = generator(image);
features.insert(name, res);
}
}
self.images.insert(path, features);
}
}
fn average_luminance(image: Arc<Image<f32>>) -> (String, FeatureResult) {
let num_pixels = image.pixels.len() as u32;
let total_brightness: f32 = image.pixels
.iter()
.map(|(r, g, b, _)| 0.299 * r + 0.587 * g + 0.114 * b) // Calculate Y for each pixel
.sum();
let average_brightness = total_brightness / num_pixels as f32;
let feature_name = String::from("average-brightness");
let feature_result = FeatureResult::F32(average_brightness);
(feature_name, feature_result)
}
fn compare_Dim(image0: Arc<Image<f32>>, image1: Arc<Image<f32>>) -> (String, FeatureResult) {
let a = image0.width as f32 / image0.height as f32;
let b = image1.width as f32 / image1.height as f32;
let equal = a == b;
let feature_name = String::from("Dimension-comparison");
let feature_result = FeatureResult::Bool(equal);
(feature_name, feature_result)
}

144
src/feature/mod.rs Normal file
View File

@ -0,0 +1,144 @@
//! # Prebuild features
//! This module provides a set of prebuild features ready to be used with a database
//! to index images.
//! Features include:
//! - distribution of colors (via histogram)
//! - distribution of luminance (via histogram)
//! - average luminance
//! - aspect ratio of images computed a width/height
//! All features are designed to used with sRGB color channels only.
use std::sync::Arc;
use crate::{image::Image, search_index::FeatureResult};
#[allow(unused)]
// from https://github.com/programmieren-mit-rust/pr-ferrisgroup/issues/8 by @SirTalksalot75
/// Compute a basic distribution of values from all color channels and count their apprearances in buckets.
/// This function will use 5 buckets per channel.
fn color_distribution(image: Arc<Image<f32>>) -> (String, FeatureResult) {
const N: usize = 5;
let mut histogram = vec![0u64; N * 3 + 1];
const INV_255: f32 = 1./255. * N as f32;
for (r, g, b, _) in image.iter() {
// map linear channel value to bin index
histogram[ (r * INV_255) as usize] += 1;
histogram[ (g * INV_255) as usize * 2 ] += 1;
histogram[ (b * INV_255) as usize * 3 ] += 1;
}
(String::from("luminance-distribution"), FeatureResult::Indices(histogram))
}
#[allow(unused)]
// from https://github.com/programmieren-mit-rust/pr-ferrisgroup/issues/8 by @SirTalksalot75
/// Compute a basic distribution of luminance values and count their apprearances in buckets.
/// Luminance is calculated via Digital ITU BT.601 and NOT the more common Photometric ITU BT.709
fn luminance_distribution(image: Arc<Image<f32>>) -> (String, FeatureResult) {
let mut histogram = vec![0u64; 256]; // Assuming 256 bins for the histogram
for (r, g, b, _) in image.iter() {
// map luminance to bin index
// luminance is a value between 0 and 255.
let luminance = (0.299 * r + 0.587 * g + 0.114 * b) as usize;
histogram[luminance] += 1;
}
(String::from("luminance-distribution"), FeatureResult::Indices(histogram))
}
#[allow(unused)]
// from https://github.com/programmieren-mit-rust/pr-ferrisgroup/issues/8 by @SirTalksalot75
/// Compute the average luminance of all pixels in a given image.
/// Luminance is calculated via Digital ITU BT.601 and NOT the more common Photometric ITU BT.709
fn average_luminance(image: Arc<Image<f32>>) -> (String, FeatureResult) {
let num_pixels = image.pixels().len() as u32;
let total_brightness: f32 = image
.iter()
.map(|(r, g, b, _)| (0.299 * r + 0.587 * g + 0.114 * b) / 255.0) // Calculate Y for each pixel
.sum();
let average_brightness = total_brightness / num_pixels as f32;
let feature_name = String::from("average-brightness");
let feature_result = FeatureResult::Percent(average_brightness);
(feature_name, feature_result)
}
#[allow(unused)]
// from https://github.com/programmieren-mit-rust/pr-ferrisgroup/issues/8 by @SirTalksalot75
fn aspect_ratio(image: Arc<Image<f32>>) -> (String, FeatureResult) {
let a = image.width() as f32 / image.height() as f32;
(String::from("aspect-ratio"), FeatureResult::Percent(a))
}
#[cfg(test)]
mod test {
use std::path::Path;
use crate::search_index::{Database, FeatureGenerator};
use super::*;
#[test]
fn test_histogram() {
let files: Vec<std::path::PathBuf> = std::fs::read_dir("res/integration/")
.unwrap()
.map(|f| f.unwrap().path())
.collect();
let feats: Vec<FeatureGenerator> = vec![color_distribution];
let db = Database::new(&files, feats).unwrap();
for (path, sim) in db.search(Path::new("res/integration/gray_image.png"), color_distribution).unwrap() {
let file_name = path.file_name().unwrap().to_str().unwrap();
if file_name.eq("gray_image.png") {
assert_eq!(sim, 1.);
}
println!("{} {}", file_name, sim);
}
}
#[test]
fn test_average_luminance() {
let files: Vec<std::path::PathBuf> = std::fs::read_dir("res/integration/")
.unwrap()
.map(|f| f.unwrap().path())
.collect();
let feats: Vec<FeatureGenerator> = vec![average_luminance];
let db = Database::new(&files, feats).unwrap();
for (path, sim) in db.search(Path::new("res/integration/gray_image.png"), average_luminance).unwrap() {
let file_name = path.file_name().unwrap().to_str().unwrap();
if file_name.eq("gray_image.png") {
assert_eq!(sim, 1.);
}
println!("{} {}", file_name, sim);
}
}
#[test]
fn test_aspect_ratio() {
let files: Vec<std::path::PathBuf> = std::fs::read_dir("res/integration/")
.unwrap()
.map(|f| f.unwrap().path())
.collect();
let feats: Vec<FeatureGenerator> = vec![aspect_ratio];
let db = Database::new(&files, feats).unwrap();
for (path, sim) in db.search(Path::new("res/integration/gray_image.png"), aspect_ratio).unwrap() {
let file_name = path.file_name().unwrap().to_str().unwrap();
if file_name.eq("gray_image.png") {
assert_eq!(sim, 1.);
}
println!("{} {}", file_name, sim);
}
}
}

View File

@ -1,6 +1,25 @@
//! # Imsearch
//! Extensible library for creating an image based search engine.
//! The library exposes the functionality to create databases which index various images stored as png files.
//! # Examples
//! ```ignore
//! let files: Vec<PathBuf> = std::fs::read_dir("image/folder/")
//! .unwrap()
//! .map(|f| f.unwrap().path())
//! .collect();
//!
//! let feats: Vec<FeatureGenerator> = vec![average_rgb_value];
//!
//! let db = Database::new(&files, feats).unwrap();
//!
//! db.write_to_file(json);
//! ```
extern crate core; extern crate core;
pub mod image; pub mod image;
pub mod image_loader; pub mod image_loader;
pub mod multithreading; pub mod multithreading;
pub mod search_index; pub mod search_index;
pub mod feature;