finished benchmark for threadpool
and fixed documentation for threadpool
This commit is contained in:
parent
c732864a74
commit
e16a38aeef
|
@ -1,8 +1,28 @@
|
|||
use std::sync::Arc;
|
||||
//! Benachmarking funcitonality for [Criterion.rs](https://github.com/bheisler/criterion.rs)
|
||||
//! This benchmark will compare the performance of various thread pools launched with different amounts of
|
||||
//! maximum threads.
|
||||
//! Each thread will calculate a partial dot product of two different vectors composed of 1,000,000 64-bit
|
||||
//! double precision floating point values.
|
||||
|
||||
use criterion::{black_box, criterion_group, criterion_main, Criterion};
|
||||
use std::{num::NonZeroUsize, sync::Arc};
|
||||
|
||||
use criterion::{black_box, criterion_group, criterion_main, BenchmarkId, Criterion, Throughput};
|
||||
use imsearch::multithreading::ThreadPool;
|
||||
|
||||
/// Amount of elements per vector used to calculate the dot product
|
||||
const VEC_ELEM_COUNT: usize = 1_000_000;
|
||||
/// Number of threads to test
|
||||
const THREAD_COUNTS: [usize; 17] = [
|
||||
1, 2, 4, 6, 8, 10, 12, 16, 18, 20, 22, 26, 28, 32, 40, 56, 64,
|
||||
];
|
||||
/// seeds used to scramble up the values produced by the hash function for each vector
|
||||
/// these are just some pseudo random numbers
|
||||
const VEC_SEEDS: [u64; 2] = [0xa3f8347abce16, 0xa273048ca9dea];
|
||||
|
||||
/// Compute the dot product of two vectors
|
||||
/// # Panics
|
||||
/// this function assumes both vectors to be of exactly the same length.
|
||||
/// If this is not the case the function will panic.
|
||||
fn dot(a: &[f64], b: &[f64]) -> f64 {
|
||||
let mut sum = 0.0;
|
||||
|
||||
|
@ -13,21 +33,23 @@ fn dot(a: &[f64], b: &[f64]) -> f64 {
|
|||
sum
|
||||
}
|
||||
|
||||
fn bench_single_threaded(a: &Vec<f64>, b: &Vec<f64>) {
|
||||
black_box(dot(a, b));
|
||||
}
|
||||
/// Computes the dot product using a thread pool with varying number of threads. The vectors will be both splitted into equally
|
||||
/// sized slices which then get passed ot their own thread to compute the partial dot product. After all threads have
|
||||
/// finished the partial dot products will be summed to create the final result.
|
||||
fn dot_parallel(a: Arc<Vec<f64>>, b: Arc<Vec<f64>>, threads: usize) {
|
||||
let mut pool =
|
||||
ThreadPool::with_threads_and_drop_handles(NonZeroUsize::new(threads).unwrap(), true);
|
||||
|
||||
fn bench_threadpool(a: Arc<Vec<f64>>, b: Arc<Vec<f64>>) {
|
||||
let mut pool = ThreadPool::new();
|
||||
// number of elements in each vector for each thread
|
||||
let steps = a.len() / threads;
|
||||
|
||||
const CHUNKS: usize = 100;
|
||||
|
||||
let steps = a.len() / CHUNKS;
|
||||
|
||||
for i in 0..CHUNKS {
|
||||
for i in 0..threads {
|
||||
// offset of the first element for the thread local vec
|
||||
let chunk = i * steps;
|
||||
// create a new strong reference to the vector
|
||||
let aa = a.clone();
|
||||
let bb = b.clone();
|
||||
// launch a new thread
|
||||
pool.enqueue(move || {
|
||||
let a = &aa[chunk..(chunk + steps)];
|
||||
let b = &bb[chunk..(chunk + steps)];
|
||||
|
@ -36,39 +58,129 @@ fn bench_threadpool(a: Arc<Vec<f64>>, b: Arc<Vec<f64>>) {
|
|||
}
|
||||
|
||||
black_box(
|
||||
// wait for the threads to finish
|
||||
pool.join_all()
|
||||
// iterate over the results and sum the parital dot products together
|
||||
.into_iter()
|
||||
.map(|r| r.unwrap())
|
||||
.reduce(|a, b| a + b),
|
||||
);
|
||||
}
|
||||
|
||||
/// Compute a simple hash value for the given index value.
|
||||
/// This function will return a value between [0, 1].
|
||||
#[inline]
|
||||
fn hash(x: f64) -> f64 {
|
||||
((x * 234.8743 + 3.8274).sin() * 87624.58376).fract()
|
||||
}
|
||||
|
||||
fn create_vec(size: usize) -> Arc<Vec<f64>> {
|
||||
/// Create a vector filled with `size` elements of 64-bit floating point numbers
|
||||
/// each initialized with the function `hash` and the given seed. The vector will
|
||||
/// be filled with values between [0, 1].
|
||||
fn create_vec(size: usize, seed: u64) -> Arc<Vec<f64>> {
|
||||
let mut vec = Vec::with_capacity(size);
|
||||
|
||||
for i in 0..size {
|
||||
vec.push(hash(i as f64));
|
||||
vec.push(hash(i as f64 + seed as f64));
|
||||
}
|
||||
|
||||
Arc::new(vec)
|
||||
}
|
||||
|
||||
pub fn benchmark_threadpool(c: &mut Criterion) {
|
||||
let vec_a = create_vec(1_000_000);
|
||||
let vec_b = create_vec(1_000_000);
|
||||
/// Function for executing the thread pool benchmarks using criterion.rs.
|
||||
/// It will create two different vectors and benchmark the single thread performance
|
||||
/// as well as the multi threadded performance for varying amounts of threads.
|
||||
pub fn bench_threadpool(c: &mut Criterion) {
|
||||
let vec_a = create_vec(VEC_ELEM_COUNT, VEC_SEEDS[0]);
|
||||
let vec_b = create_vec(VEC_ELEM_COUNT, VEC_SEEDS[1]);
|
||||
|
||||
c.bench_function("single threaded", |b| {
|
||||
b.iter(|| bench_single_threaded(&vec_a, &vec_b))
|
||||
});
|
||||
c.bench_function("multi threaded", |b| {
|
||||
b.iter(|| bench_threadpool(vec_a.clone(), vec_b.clone()))
|
||||
let mut group = c.benchmark_group("threadpool with various number of threads");
|
||||
|
||||
for threads in THREAD_COUNTS.iter() {
|
||||
group.throughput(Throughput::Bytes(*threads as u64));
|
||||
group.bench_with_input(BenchmarkId::from_parameter(threads), threads, |b, _| {
|
||||
b.iter(|| {
|
||||
dot_parallel(vec_a.clone(), vec_b.clone(), *threads);
|
||||
});
|
||||
});
|
||||
}
|
||||
group.finish();
|
||||
}
|
||||
|
||||
/// Benchmark the effects of over and underusing a thread pools thread capacity.
|
||||
/// The thread pool will automatically choose the number of threads to use.
|
||||
/// We will then run a custom number of jobs with that pool that may be smaller or larger
|
||||
/// than the amount of threads the pool can offer.
|
||||
fn pool_overusage(a: Arc<Vec<f64>>, b: Arc<Vec<f64>>, threads: usize) {
|
||||
// automatically choose the number of threads
|
||||
let mut pool = ThreadPool::new();
|
||||
// drop the handles used by each thread after its done
|
||||
pool.drop_finished_handles();
|
||||
|
||||
// number of elements in each vector for each thread
|
||||
let steps = a.len() / threads;
|
||||
|
||||
for i in 0..threads {
|
||||
// offset of the first element for the thread local vec
|
||||
let chunk = i * steps;
|
||||
// create a new strong reference to the vector
|
||||
let aa = a.clone();
|
||||
let bb = b.clone();
|
||||
// launch a new thread
|
||||
pool.enqueue(move || {
|
||||
let a = &aa[chunk..(chunk + steps)];
|
||||
let b = &bb[chunk..(chunk + steps)];
|
||||
dot(a, b)
|
||||
});
|
||||
}
|
||||
|
||||
black_box(
|
||||
// wait for the threads to finish
|
||||
pool.join_all()
|
||||
// iterate over the results and sum the parital dot products together
|
||||
.into_iter()
|
||||
.map(|r| r.unwrap())
|
||||
.reduce(|a, b| a + b),
|
||||
);
|
||||
}
|
||||
|
||||
/// Benchmark the effects of over and underusing a thread pools thread capacity.
|
||||
/// The thread pool will automatically choose the number of threads to use.
|
||||
/// We will then run a custom number of jobs with that pool that may be smaller or larger
|
||||
/// than the amount of threads the pool can offer.
|
||||
pub fn bench_overusage(c: &mut Criterion) {
|
||||
let vec_a = create_vec(VEC_ELEM_COUNT, VEC_SEEDS[0]);
|
||||
let vec_b = create_vec(VEC_ELEM_COUNT, VEC_SEEDS[1]);
|
||||
|
||||
let mut group = c.benchmark_group("threadpool overusage");
|
||||
|
||||
for threads in THREAD_COUNTS.iter() {
|
||||
group.throughput(Throughput::Bytes(*threads as u64));
|
||||
group.bench_with_input(BenchmarkId::from_parameter(threads), threads, |b, _| {
|
||||
b.iter(|| {
|
||||
pool_overusage(vec_a.clone(), vec_b.clone(), *threads);
|
||||
});
|
||||
});
|
||||
}
|
||||
group.finish();
|
||||
}
|
||||
|
||||
/// Benchmark the performance of a single thread used to calculate the dot product.
|
||||
pub fn bench_single_threaded(c: &mut Criterion) {
|
||||
let vec_a = create_vec(VEC_ELEM_COUNT, VEC_SEEDS[0]);
|
||||
let vec_b = create_vec(VEC_ELEM_COUNT, VEC_SEEDS[1]);
|
||||
|
||||
c.bench_function("single threaded", |s| {
|
||||
s.iter(|| {
|
||||
black_box(dot(&vec_a, &vec_b));
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
criterion_group!(benches, benchmark_threadpool);
|
||||
criterion_group!(
|
||||
benches,
|
||||
bench_single_threaded,
|
||||
bench_threadpool,
|
||||
bench_overusage
|
||||
);
|
||||
criterion_main!(benches);
|
||||
|
|
|
@ -26,7 +26,7 @@
|
|||
//! This implementation is not fully platform independent. This is due to the usage of [`std::sync::atomic::AtomicUsize`].
|
||||
//! This type is used to remove some locks from otherwise used [`std::sync::Mutex`] wrapping a [`usize`].
|
||||
//! Note that atomic primitives are not available on all platforms but "can generally be relied upon existing"
|
||||
//! (see: https://doc.rust-lang.org/std/sync/atomic/index.html).
|
||||
//! (see: <https://doc.rust-lang.org/std/sync/atomic/index.html>).
|
||||
//! Additionally this implementation relies on using the `load` and `store` operations
|
||||
//! instead of using more comfortable ones like `fetch_add` in order to avoid unnecessary calls
|
||||
//! to `unwrap` or `expected` from [`std::sync::MutexGuard`].
|
||||
|
@ -86,7 +86,7 @@ fn get_default_thread_count() -> usize {
|
|||
/// This implementation is not fully platform independent. This is due to the usage of [`std::sync::atomic::AtomicUsize`].
|
||||
/// This type is used to remove some locks from otherwise used [`std::sync::Mutex`] wrapping a [`usize`].
|
||||
/// Note that atomic primitives are not available on all platforms but "can generally be relied upon existing"
|
||||
/// (see: https://doc.rust-lang.org/std/sync/atomic/index.html).
|
||||
/// (see: <https://doc.rust-lang.org/std/sync/atomic/index.html>).
|
||||
/// Additionally this implementation relies on using the `load` and `store` operations
|
||||
/// instead of using more comfortable one like `fetch_add` in order to avoid unnecessary calls
|
||||
/// to `unwrap` or `expected` from [`std::sync::MutexGuard`].
|
||||
|
@ -112,7 +112,7 @@ where
|
|||
/// number of currently running threads
|
||||
/// new implementation relies on atomic primitives to avoid locking and possible
|
||||
/// guard errors. Note that atomic primitives are not available on all platforms "can generally be relied upon existing"
|
||||
/// (see: https://doc.rust-lang.org/std/sync/atomic/index.html).
|
||||
/// (see: <https://doc.rust-lang.org/std/sync/atomic/index.html>).
|
||||
/// Also this implementation relies on using the `load` and `store` operations
|
||||
/// instead of using more comfortable one like `fetch_add`
|
||||
threads: Arc<AtomicUsize>,
|
||||
|
@ -173,7 +173,7 @@ where
|
|||
/// supplying a number of threads to great may negatively impact performance as the system may not
|
||||
/// be able to full fill the required needs
|
||||
/// # Memory usage
|
||||
/// if `drop_handles` is set to [`Bool::false`] the pool will continue to store the handles of
|
||||
/// if `drop_handles` is set to `false` the pool will continue to store the handles of
|
||||
/// launched threads. This causes memory consumption to rise over time as more and more
|
||||
/// threads are launched.
|
||||
pub fn with_threads_and_drop_handles(
|
||||
|
|
Loading…
Reference in New Issue