finished documetation for thread pool
This commit is contained in:
parent
9be7bc18c7
commit
7a6dc389b9
|
@ -4,7 +4,7 @@
|
||||||
//! Each thread will calculate a partial dot product of two different vectors composed of 1,000,000 64-bit
|
//! Each thread will calculate a partial dot product of two different vectors composed of 1,000,000 64-bit
|
||||||
//! double precision floating point values.
|
//! double precision floating point values.
|
||||||
|
|
||||||
use std::{sync::Arc};
|
use std::sync::Arc;
|
||||||
|
|
||||||
use criterion::{black_box, criterion_group, criterion_main, BenchmarkId, Criterion, Throughput};
|
use criterion::{black_box, criterion_group, criterion_main, BenchmarkId, Criterion, Throughput};
|
||||||
use imsearch::multithreading::ThreadPool;
|
use imsearch::multithreading::ThreadPool;
|
||||||
|
@ -37,8 +37,7 @@ fn dot(a: &[f64], b: &[f64]) -> f64 {
|
||||||
/// sized slices which then get passed ot their own thread to compute the partial dot product. After all threads have
|
/// sized slices which then get passed ot their own thread to compute the partial dot product. After all threads have
|
||||||
/// finished the partial dot products will be summed to create the final result.
|
/// finished the partial dot products will be summed to create the final result.
|
||||||
fn dot_parallel(a: Arc<Vec<f64>>, b: Arc<Vec<f64>>, threads: usize) {
|
fn dot_parallel(a: Arc<Vec<f64>>, b: Arc<Vec<f64>>, threads: usize) {
|
||||||
let mut pool =
|
let mut pool = ThreadPool::with_limit(threads);
|
||||||
ThreadPool::with_limit(threads);
|
|
||||||
|
|
||||||
// number of elements in each vector for each thread
|
// number of elements in each vector for each thread
|
||||||
let steps = a.len() / threads;
|
let steps = a.len() / threads;
|
||||||
|
@ -56,7 +55,7 @@ fn dot_parallel(a: Arc<Vec<f64>>, b: Arc<Vec<f64>>, threads: usize) {
|
||||||
dot(a, b)
|
dot(a, b)
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
|
|
||||||
pool.join_all();
|
pool.join_all();
|
||||||
|
|
||||||
black_box(pool.get_results().iter().sum::<f64>());
|
black_box(pool.get_results().iter().sum::<f64>());
|
||||||
|
|
|
@ -1,35 +1,114 @@
|
||||||
use std::{thread::{JoinHandle, self}, sync::{mpsc::{Receiver, channel, Sender}, Mutex, Arc}, num::NonZeroUsize, collections::VecDeque};
|
//! This module provides the functionality to create thread pool to execute tasks in parallel.
|
||||||
|
//! The amount of threads to be used at maximum can be regulated by using `ThreadPool::with_limit`.
|
||||||
|
//! This implementation is aimed to be of low runtime cost with minimal sychronisation due to blocking.
|
||||||
|
//! Note that no threads will be spawned until jobs are supplied to be executed. For every supplied job
|
||||||
|
//! a new thread will be launched until the maximum number is reached. By then every launched thread will
|
||||||
|
//! be reused to process the remaining elements of the queue. If no jobs are left to be executed
|
||||||
|
//! all threads will finish and die. This means that if nothing is done, no threads will run in idle in the background.
|
||||||
|
//! # Example
|
||||||
|
//! ```rust
|
||||||
|
//! # use imsearch::multithreading::ThreadPool;
|
||||||
|
//! let mut pool = ThreadPool::with_limit(2);
|
||||||
|
//!
|
||||||
|
//! for i in 0..10 {
|
||||||
|
//! pool.enqueue(move || i);
|
||||||
|
//! }
|
||||||
|
//!
|
||||||
|
//! pool.join_all();
|
||||||
|
//! assert_eq!(pool.get_results().iter().sum::<i32>(), 45);
|
||||||
|
//! ```
|
||||||
|
|
||||||
const DEFAULT_THREAD_POOL_SIZE: usize = 1;
|
use std::{
|
||||||
|
collections::VecDeque,
|
||||||
|
num::NonZeroUsize,
|
||||||
|
sync::{
|
||||||
|
mpsc::{channel, Receiver, Sender},
|
||||||
|
Arc, Mutex,
|
||||||
|
},
|
||||||
|
thread::{self, JoinHandle},
|
||||||
|
};
|
||||||
|
|
||||||
|
/// Default number if threads to be used in case [`std::thread::available_parallelism`] fails.
|
||||||
|
pub const DEFAULT_THREAD_POOL_SIZE: usize = 1;
|
||||||
|
|
||||||
|
/// Indicates the priority level of functions or closures which get supplied to the pool.
|
||||||
|
/// Use [`Priority::High`] to ensure the closue to be executed before all closures that are already supplied
|
||||||
|
/// Use [`Priority::Low`] to ensure the closue to be executed after all closures that are already supplied
|
||||||
|
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
|
||||||
|
pub enum Priority {
|
||||||
|
/// Indicate that the closure or function supplied to the thread
|
||||||
|
/// has higher priority than any other given to the pool until now.
|
||||||
|
/// The item will get enqueued at the start of the waiting-queue.
|
||||||
|
High,
|
||||||
|
/// Indicate that the closure or function supplied to the thread pool
|
||||||
|
/// has lower priority than the already supplied ones in this pool.
|
||||||
|
/// The item will get enqueued at the end of the waiting-queue.
|
||||||
|
Low,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Jobs are functions which are executed by the thread pool. They can be stalled when no threads are
|
||||||
|
/// free to execute them directly. They are meant to be executed only once and be done.
|
||||||
pub trait Job<T>: Send + 'static + FnOnce() -> T
|
pub trait Job<T>: Send + 'static + FnOnce() -> T
|
||||||
where T: Send
|
where
|
||||||
|
T: Send,
|
||||||
{
|
{
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<U, T> Job<T> for U
|
impl<U, T> Job<T> for U
|
||||||
where U: Send + 'static + FnOnce() -> T, T: Send + 'static
|
where
|
||||||
|
U: Send + 'static + FnOnce() -> T,
|
||||||
|
T: Send + 'static,
|
||||||
{
|
{
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Thread pool which can be used to execute functions or closures in parallel.
|
||||||
|
/// The amount of threads to be used at maximum can be regulated by using `ThreadPool::with_limit`.
|
||||||
|
/// This implementation is aimed to be of low runtime cost with minimal sychronisation due to blocking.
|
||||||
|
/// Note that no threads will be spawned until jobs are supplied to be executed. For every supplied job
|
||||||
|
/// a new thread will be launched until the maximum number is reached. By then every launched thread will
|
||||||
|
/// be reused to process the remaining elements of the queue. If no jobs are left to be executed
|
||||||
|
/// all threads will finish and die. This means that if nothing is done, no threads will run in idle in the background.
|
||||||
|
/// # Example
|
||||||
|
/// ```rust
|
||||||
|
/// # use imsearch::multithreading::ThreadPool;
|
||||||
|
/// let mut pool = ThreadPool::with_limit(2);
|
||||||
|
///
|
||||||
|
/// for i in 0..10 {
|
||||||
|
/// pool.enqueue(move || i);
|
||||||
|
/// }
|
||||||
|
///
|
||||||
|
/// pool.join_all();
|
||||||
|
/// assert_eq!(pool.get_results().iter().sum::<i32>(), 45);
|
||||||
|
/// ```
|
||||||
#[derive(Debug)]
|
#[derive(Debug)]
|
||||||
pub struct ThreadPool<T, F>
|
pub struct ThreadPool<T, F>
|
||||||
where T: Send, F: Job<T>
|
where
|
||||||
|
T: Send,
|
||||||
|
F: Job<T>,
|
||||||
{
|
{
|
||||||
|
/// queue for storing the jobs to be executed
|
||||||
queue: Arc<Mutex<VecDeque<F>>>,
|
queue: Arc<Mutex<VecDeque<F>>>,
|
||||||
|
/// handles for all threads currently running and processing jobs
|
||||||
handles: Vec<JoinHandle<()>>,
|
handles: Vec<JoinHandle<()>>,
|
||||||
|
/// reciver end for channel based communication between threads
|
||||||
receiver: Receiver<T>,
|
receiver: Receiver<T>,
|
||||||
|
/// sender end for channel based communication between threads
|
||||||
sender: Sender<T>,
|
sender: Sender<T>,
|
||||||
|
/// maximum amount of threads to be used in parallel
|
||||||
limit: NonZeroUsize,
|
limit: NonZeroUsize,
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<T, F> Default for ThreadPool<T, F>
|
impl<T, F> Default for ThreadPool<T, F>
|
||||||
where T: Send + 'static, F: Job<T>
|
where
|
||||||
|
T: Send + 'static,
|
||||||
|
F: Job<T>,
|
||||||
{
|
{
|
||||||
fn default() -> Self {
|
fn default() -> Self {
|
||||||
let (sender, receiver) = channel::<T>();
|
let (sender, receiver) = channel::<T>();
|
||||||
|
|
||||||
let default = NonZeroUsize::new(DEFAULT_THREAD_POOL_SIZE).expect("Thread limit must be non-zero");
|
// determine default thread count to use based on the system
|
||||||
|
let default =
|
||||||
|
NonZeroUsize::new(DEFAULT_THREAD_POOL_SIZE).expect("Thread limit must be non-zero");
|
||||||
let limit = thread::available_parallelism().unwrap_or(default);
|
let limit = thread::available_parallelism().unwrap_or(default);
|
||||||
|
|
||||||
Self {
|
Self {
|
||||||
|
@ -43,12 +122,22 @@ where T: Send + 'static, F: Job<T>
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<T, F> ThreadPool<T, F>
|
impl<T, F> ThreadPool<T, F>
|
||||||
where T: Send + 'static, F: Job<T>
|
where
|
||||||
|
T: Send + 'static,
|
||||||
|
F: Job<T>,
|
||||||
{
|
{
|
||||||
|
/// Creates a new thread pool with default thread count determined by either
|
||||||
|
/// [`std::thread::available_parallelism`] or [`DEFAULT_THREAD_POOL_SIZE`] in case it fails.
|
||||||
|
/// No threads will be lauched until jobs are enqueued.
|
||||||
pub fn new() -> Self {
|
pub fn new() -> Self {
|
||||||
Default::default()
|
Default::default()
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Creates a new thread pool with the given thread count. The pool will continue to launch new threads even if
|
||||||
|
/// the system does not allow for that count of parallelism.
|
||||||
|
/// No threads will be lauched until jobs are enqueued.
|
||||||
|
/// # Panic
|
||||||
|
/// This function will fails if `max_threads` is zero.
|
||||||
pub fn with_limit(max_threads: usize) -> Self {
|
pub fn with_limit(max_threads: usize) -> Self {
|
||||||
Self {
|
Self {
|
||||||
limit: NonZeroUsize::new(max_threads).expect("Thread limit must be non-zero"),
|
limit: NonZeroUsize::new(max_threads).expect("Thread limit must be non-zero"),
|
||||||
|
@ -56,7 +145,22 @@ where T: Send + 'static, F: Job<T>
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn enqueue(&mut self, func: F) {
|
/// Put a new job into the queue to be executed by a thread in the future.
|
||||||
|
/// The priority of the job will determine if the job will be put at the start or end of the queue.
|
||||||
|
/// See [`crate::multithreading::Priority`].
|
||||||
|
/// This function will create a new thread if the maximum number of threads in not reached.
|
||||||
|
/// In case the maximum number of threads is already used, the job is stalled and will get executed
|
||||||
|
/// when a thread is ready and its at the start of the queue.
|
||||||
|
pub fn enqueue_priorize(&mut self, func: F, priority: Priority) {
|
||||||
|
// put job into queue
|
||||||
|
let mut queue = self.queue.lock().unwrap();
|
||||||
|
|
||||||
|
// insert new job into queue depending on its priority
|
||||||
|
match priority {
|
||||||
|
Priority::High => queue.push_front(func),
|
||||||
|
Priority::Low => queue.push_back(func),
|
||||||
|
}
|
||||||
|
|
||||||
if self.handles.len() < self.limit.get() {
|
if self.handles.len() < self.limit.get() {
|
||||||
// we can still launch threads to run in parallel
|
// we can still launch threads to run in parallel
|
||||||
|
|
||||||
|
@ -69,21 +173,93 @@ where T: Send + 'static, F: Job<T>
|
||||||
tx.send(job()).expect("cannot send result");
|
tx.send(job()).expect("cannot send result");
|
||||||
}
|
}
|
||||||
}));
|
}));
|
||||||
|
|
||||||
} else {
|
|
||||||
self.queue.lock().unwrap().push_back(func);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
self.handles.retain(|h| !h.is_finished());
|
self.handles.retain(|h| !h.is_finished());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Put a new job into the queue to be executed by a thread in the future.
|
||||||
|
/// The priority of the job is automatically set to [`crate::multithreading::Priority::Low`].
|
||||||
|
/// This function will create a new thread if the maximum number of threads in not reached.
|
||||||
|
/// In case the maximum number of threads is already used, the job is stalled and will get executed
|
||||||
|
/// when a thread is ready and its at the start of the queue.
|
||||||
|
pub fn enqueue(&mut self, func: F) {
|
||||||
|
self.enqueue_priorize(func, Priority::Low);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Wait for all threads to finish executing. This means that by the time all threads have finished
|
||||||
|
/// every task will have been executed too. In other words the threads finsish when the queue of jobs is empty.
|
||||||
|
/// This function will block the caller thread.
|
||||||
pub fn join_all(&mut self) {
|
pub fn join_all(&mut self) {
|
||||||
while let Some(handle) = self.handles.pop() {
|
while let Some(handle) = self.handles.pop() {
|
||||||
handle.join().unwrap();
|
handle.join().unwrap();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn get_results(&mut self) -> Vec<T> {
|
/// Returns all results that have been returned by the threads until now
|
||||||
|
/// and haven't been consumed yet.
|
||||||
|
/// All results retrieved from this call won't be returned on a second call.
|
||||||
|
/// This function is non blocking.
|
||||||
|
pub fn try_get_results(&mut self) -> Vec<T> {
|
||||||
self.receiver.try_iter().collect()
|
self.receiver.try_iter().collect()
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
/// Returns all results that have been returned by the threads until now
|
||||||
|
/// and haven't been consumed yet. The function will also wait for all threads to finish executing (empty the queue).
|
||||||
|
/// All results retrieved from this call won't be returned on a second call.
|
||||||
|
/// This function will block the caller thread.
|
||||||
|
pub fn get_results(&mut self) -> Vec<T> {
|
||||||
|
self.join_all();
|
||||||
|
self.try_get_results()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod test {
|
||||||
|
use super::*;
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_default() {
|
||||||
|
let mut pool = ThreadPool::default();
|
||||||
|
|
||||||
|
for i in 0..10 {
|
||||||
|
pool.enqueue_priorize(move || i, Priority::High);
|
||||||
|
}
|
||||||
|
|
||||||
|
pool.join_all();
|
||||||
|
|
||||||
|
assert_eq!(pool.try_get_results().iter().sum::<i32>(), 45);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_limit() {
|
||||||
|
let mut pool = ThreadPool::with_limit(2);
|
||||||
|
|
||||||
|
for i in 0..10 {
|
||||||
|
pool.enqueue(move || i);
|
||||||
|
}
|
||||||
|
|
||||||
|
assert_eq!(pool.handles.len(), 2);
|
||||||
|
assert_eq!(pool.limit.get(), 2);
|
||||||
|
|
||||||
|
pool.join_all();
|
||||||
|
|
||||||
|
assert_eq!(pool.get_results().iter().sum::<i32>(), 45);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_multiple() {
|
||||||
|
let mut pool = ThreadPool::with_limit(2);
|
||||||
|
|
||||||
|
for i in 0..10 {
|
||||||
|
pool.enqueue(move || i);
|
||||||
|
}
|
||||||
|
|
||||||
|
assert_eq!(pool.handles.len(), 2);
|
||||||
|
assert_eq!(pool.limit.get(), 2);
|
||||||
|
|
||||||
|
pool.join_all();
|
||||||
|
|
||||||
|
assert_eq!(pool.get_results().iter().sum::<i32>(), 45);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
Loading…
Reference in New Issue