Multithreading (#12)
* added multithreading crate with thread pool * added crate mutlithreading * replaced `threads` memeber from `Threadpool` mutex with atomic primitive * fixed doctest for threadpool * added module documentation to multithreading * added functionality to drop thread handles automatically when threads have finished * reformatted crate `multithreading` to pass tests * added benchmark for `threadpool` using `criterion`. * finished benchmark for threadpool and fixed documentation for threadpool * added unit test to `multithreading`
This commit is contained in:
parent
e24028ffc6
commit
10266dd1bc
|
@ -1,3 +1,4 @@
|
||||||
/target
|
/target
|
||||||
/Cargo.lock
|
/Cargo.lock
|
||||||
.DS_Store
|
.DS_Store
|
||||||
|
/.vscode
|
|
@ -10,3 +10,10 @@ authors = ["Sven Vogel", "Felix L. Müller", "Elias Alexander", "Elias Schmidt"]
|
||||||
png = "0.17.8"
|
png = "0.17.8"
|
||||||
serde = { version = "1.0", features = ["derive"] }
|
serde = { version = "1.0", features = ["derive"] }
|
||||||
serde_json = "1.0"
|
serde_json = "1.0"
|
||||||
|
|
||||||
|
[dev-dependencies]
|
||||||
|
criterion = "0.5.1"
|
||||||
|
|
||||||
|
[[bench]]
|
||||||
|
name = "multithreading"
|
||||||
|
harness = false
|
|
@ -0,0 +1,186 @@
|
||||||
|
//! Benachmarking funcitonality for [Criterion.rs](https://github.com/bheisler/criterion.rs)
|
||||||
|
//! This benchmark will compare the performance of various thread pools launched with different amounts of
|
||||||
|
//! maximum threads.
|
||||||
|
//! Each thread will calculate a partial dot product of two different vectors composed of 1,000,000 64-bit
|
||||||
|
//! double precision floating point values.
|
||||||
|
|
||||||
|
use std::{num::NonZeroUsize, sync::Arc};
|
||||||
|
|
||||||
|
use criterion::{black_box, criterion_group, criterion_main, BenchmarkId, Criterion, Throughput};
|
||||||
|
use imsearch::multithreading::ThreadPool;
|
||||||
|
|
||||||
|
/// Amount of elements per vector used to calculate the dot product
|
||||||
|
const VEC_ELEM_COUNT: usize = 1_000_000;
|
||||||
|
/// Number of threads to test
|
||||||
|
const THREAD_COUNTS: [usize; 17] = [
|
||||||
|
1, 2, 4, 6, 8, 10, 12, 16, 18, 20, 22, 26, 28, 32, 40, 56, 64,
|
||||||
|
];
|
||||||
|
/// seeds used to scramble up the values produced by the hash function for each vector
|
||||||
|
/// these are just some pseudo random numbers
|
||||||
|
const VEC_SEEDS: [u64; 2] = [0xa3f8347abce16, 0xa273048ca9dea];
|
||||||
|
|
||||||
|
/// Compute the dot product of two vectors
|
||||||
|
/// # Panics
|
||||||
|
/// this function assumes both vectors to be of exactly the same length.
|
||||||
|
/// If this is not the case the function will panic.
|
||||||
|
fn dot(a: &[f64], b: &[f64]) -> f64 {
|
||||||
|
let mut sum = 0.0;
|
||||||
|
|
||||||
|
for i in 0..a.len() {
|
||||||
|
sum += a[i] * b[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
sum
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Computes the dot product using a thread pool with varying number of threads. The vectors will be both splitted into equally
|
||||||
|
/// sized slices which then get passed ot their own thread to compute the partial dot product. After all threads have
|
||||||
|
/// finished the partial dot products will be summed to create the final result.
|
||||||
|
fn dot_parallel(a: Arc<Vec<f64>>, b: Arc<Vec<f64>>, threads: usize) {
|
||||||
|
let mut pool =
|
||||||
|
ThreadPool::with_threads_and_drop_handles(NonZeroUsize::new(threads).unwrap(), true);
|
||||||
|
|
||||||
|
// number of elements in each vector for each thread
|
||||||
|
let steps = a.len() / threads;
|
||||||
|
|
||||||
|
for i in 0..threads {
|
||||||
|
// offset of the first element for the thread local vec
|
||||||
|
let chunk = i * steps;
|
||||||
|
// create a new strong reference to the vector
|
||||||
|
let aa = a.clone();
|
||||||
|
let bb = b.clone();
|
||||||
|
// launch a new thread
|
||||||
|
pool.enqueue(move || {
|
||||||
|
let a = &aa[chunk..(chunk + steps)];
|
||||||
|
let b = &bb[chunk..(chunk + steps)];
|
||||||
|
dot(a, b)
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
black_box(
|
||||||
|
// wait for the threads to finish
|
||||||
|
pool.join_all()
|
||||||
|
// iterate over the results and sum the parital dot products together
|
||||||
|
.into_iter()
|
||||||
|
.map(|r| r.unwrap())
|
||||||
|
.reduce(|a, b| a + b),
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Compute a simple hash value for the given index value.
|
||||||
|
/// This function will return a value between [0, 1].
|
||||||
|
#[inline]
|
||||||
|
fn hash(x: f64) -> f64 {
|
||||||
|
((x * 234.8743 + 3.8274).sin() * 87624.58376).fract()
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create a vector filled with `size` elements of 64-bit floating point numbers
|
||||||
|
/// each initialized with the function `hash` and the given seed. The vector will
|
||||||
|
/// be filled with values between [0, 1].
|
||||||
|
fn create_vec(size: usize, seed: u64) -> Arc<Vec<f64>> {
|
||||||
|
let mut vec = Vec::with_capacity(size);
|
||||||
|
|
||||||
|
for i in 0..size {
|
||||||
|
vec.push(hash(i as f64 + seed as f64));
|
||||||
|
}
|
||||||
|
|
||||||
|
Arc::new(vec)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Function for executing the thread pool benchmarks using criterion.rs.
|
||||||
|
/// It will create two different vectors and benchmark the single thread performance
|
||||||
|
/// as well as the multi threadded performance for varying amounts of threads.
|
||||||
|
pub fn bench_threadpool(c: &mut Criterion) {
|
||||||
|
let vec_a = create_vec(VEC_ELEM_COUNT, VEC_SEEDS[0]);
|
||||||
|
let vec_b = create_vec(VEC_ELEM_COUNT, VEC_SEEDS[1]);
|
||||||
|
|
||||||
|
let mut group = c.benchmark_group("threadpool with various number of threads");
|
||||||
|
|
||||||
|
for threads in THREAD_COUNTS.iter() {
|
||||||
|
group.throughput(Throughput::Bytes(*threads as u64));
|
||||||
|
group.bench_with_input(BenchmarkId::from_parameter(threads), threads, |b, _| {
|
||||||
|
b.iter(|| {
|
||||||
|
dot_parallel(vec_a.clone(), vec_b.clone(), *threads);
|
||||||
|
});
|
||||||
|
});
|
||||||
|
}
|
||||||
|
group.finish();
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Benchmark the effects of over and underusing a thread pools thread capacity.
|
||||||
|
/// The thread pool will automatically choose the number of threads to use.
|
||||||
|
/// We will then run a custom number of jobs with that pool that may be smaller or larger
|
||||||
|
/// than the amount of threads the pool can offer.
|
||||||
|
fn pool_overusage(a: Arc<Vec<f64>>, b: Arc<Vec<f64>>, threads: usize) {
|
||||||
|
// automatically choose the number of threads
|
||||||
|
let mut pool = ThreadPool::new();
|
||||||
|
// drop the handles used by each thread after its done
|
||||||
|
pool.drop_finished_handles();
|
||||||
|
|
||||||
|
// number of elements in each vector for each thread
|
||||||
|
let steps = a.len() / threads;
|
||||||
|
|
||||||
|
for i in 0..threads {
|
||||||
|
// offset of the first element for the thread local vec
|
||||||
|
let chunk = i * steps;
|
||||||
|
// create a new strong reference to the vector
|
||||||
|
let aa = a.clone();
|
||||||
|
let bb = b.clone();
|
||||||
|
// launch a new thread
|
||||||
|
pool.enqueue(move || {
|
||||||
|
let a = &aa[chunk..(chunk + steps)];
|
||||||
|
let b = &bb[chunk..(chunk + steps)];
|
||||||
|
dot(a, b)
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
black_box(
|
||||||
|
// wait for the threads to finish
|
||||||
|
pool.join_all()
|
||||||
|
// iterate over the results and sum the parital dot products together
|
||||||
|
.into_iter()
|
||||||
|
.map(|r| r.unwrap())
|
||||||
|
.reduce(|a, b| a + b),
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Benchmark the effects of over and underusing a thread pools thread capacity.
|
||||||
|
/// The thread pool will automatically choose the number of threads to use.
|
||||||
|
/// We will then run a custom number of jobs with that pool that may be smaller or larger
|
||||||
|
/// than the amount of threads the pool can offer.
|
||||||
|
pub fn bench_overusage(c: &mut Criterion) {
|
||||||
|
let vec_a = create_vec(VEC_ELEM_COUNT, VEC_SEEDS[0]);
|
||||||
|
let vec_b = create_vec(VEC_ELEM_COUNT, VEC_SEEDS[1]);
|
||||||
|
|
||||||
|
let mut group = c.benchmark_group("threadpool overusage");
|
||||||
|
|
||||||
|
for threads in THREAD_COUNTS.iter() {
|
||||||
|
group.throughput(Throughput::Bytes(*threads as u64));
|
||||||
|
group.bench_with_input(BenchmarkId::from_parameter(threads), threads, |b, _| {
|
||||||
|
b.iter(|| {
|
||||||
|
pool_overusage(vec_a.clone(), vec_b.clone(), *threads);
|
||||||
|
});
|
||||||
|
});
|
||||||
|
}
|
||||||
|
group.finish();
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Benchmark the performance of a single thread used to calculate the dot product.
|
||||||
|
pub fn bench_single_threaded(c: &mut Criterion) {
|
||||||
|
let vec_a = create_vec(VEC_ELEM_COUNT, VEC_SEEDS[0]);
|
||||||
|
let vec_b = create_vec(VEC_ELEM_COUNT, VEC_SEEDS[1]);
|
||||||
|
|
||||||
|
c.bench_function("single threaded", |s| {
|
||||||
|
s.iter(|| {
|
||||||
|
black_box(dot(&vec_a, &vec_b));
|
||||||
|
});
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
criterion_group!(
|
||||||
|
benches,
|
||||||
|
bench_single_threaded,
|
||||||
|
bench_threadpool,
|
||||||
|
bench_overusage
|
||||||
|
);
|
||||||
|
criterion_main!(benches);
|
|
@ -1,3 +1,5 @@
|
||||||
|
pub mod multithreading;
|
||||||
|
|
||||||
pub fn add(left: usize, right: usize) -> usize {
|
pub fn add(left: usize, right: usize) -> usize {
|
||||||
left + right
|
left + right
|
||||||
}
|
}
|
||||||
|
|
|
@ -0,0 +1,399 @@
|
||||||
|
//! This module provides the functionality to create a thread pool of fixed capacity.
|
||||||
|
//! This means that the pool can be used to dispatch functions or closures that will be executed
|
||||||
|
//! some time in the future each on its own thread. When dispatching jobs, the pool will test whether
|
||||||
|
//! threads are available. If so the pool will directly launch a new thread to run the supplied function.
|
||||||
|
//! In case no threads are available the job will be stalled for execution until a thread is free to run the first
|
||||||
|
//! stalled job.
|
||||||
|
//!
|
||||||
|
//! The pool will also keep track of all the handles that [`std::thread::spawn`] returns. Hence after executing a job
|
||||||
|
//! the pool still queries the result of the function which can be retrieved any time after the submission.
|
||||||
|
//! After retrieving the result of the function the handle is discarded and cannot be accessed again through the thread pool.
|
||||||
|
//!
|
||||||
|
//! # Threads
|
||||||
|
//! The maximum number of threads to be used can be specified when creating a new thread pool.
|
||||||
|
//! Alternatively the thread pool can be advised to automatically determine the recommend amount of threads to use.
|
||||||
|
//! Note that this has its limitations due to possible side effects of sandboxing, containerization or vms.
|
||||||
|
//! For further information see: [`thread::available_parallelism`]
|
||||||
|
//!
|
||||||
|
//! # Memory consumption over time
|
||||||
|
//! The pool will store the handle for every thread launched constantly increasing the memory consumption.
|
||||||
|
//! It should be noted that the pool won't perform any kind of cleanup of the stored handles, meaning it is recommended to either make regular calls to
|
||||||
|
//! `join_all` or `get_finished` in order to clear the vector of handles to avoid endless memory consumption.
|
||||||
|
//! Alternatively, you can use the function `with_threads_and_drop_handles` to create a new pool that discard all thread
|
||||||
|
//! handles after the threads are finished. This will automatically reduce the memory consumption of the pool over time.
|
||||||
|
//!
|
||||||
|
//! # Portability
|
||||||
|
//! This implementation is not fully platform independent. This is due to the usage of [`std::sync::atomic::AtomicUsize`].
|
||||||
|
//! This type is used to remove some locks from otherwise used [`std::sync::Mutex`] wrapping a [`usize`].
|
||||||
|
//! Note that atomic primitives are not available on all platforms but "can generally be relied upon existing"
|
||||||
|
//! (see: <https://doc.rust-lang.org/std/sync/atomic/index.html>).
|
||||||
|
//! Additionally this implementation relies on using the `load` and `store` operations
|
||||||
|
//! instead of using more comfortable ones like `fetch_add` in order to avoid unnecessary calls
|
||||||
|
//! to `unwrap` or `expected` from [`std::sync::MutexGuard`].
|
||||||
|
|
||||||
|
use std::{
|
||||||
|
any::Any,
|
||||||
|
collections::VecDeque,
|
||||||
|
num::NonZeroUsize,
|
||||||
|
sync::{
|
||||||
|
atomic::{AtomicBool, AtomicUsize, Ordering},
|
||||||
|
Arc, Mutex,
|
||||||
|
},
|
||||||
|
thread::{self, JoinHandle},
|
||||||
|
};
|
||||||
|
|
||||||
|
/// Maximum number of thread to be used by the thread pool in case all methods
|
||||||
|
/// of determining a recommend number failed
|
||||||
|
#[allow(unused)]
|
||||||
|
pub const FALLBACK_THREADS: usize = 1;
|
||||||
|
|
||||||
|
/// Returns the number of threads to be used by the thread pool by default.
|
||||||
|
/// This function tries to fetch a recommended number by calling [`thread::available_parallelism`].
|
||||||
|
/// In case this fails [`FALLBACK_THREADS`] will be returned
|
||||||
|
fn get_default_thread_count() -> usize {
|
||||||
|
// number of threads to fallback to
|
||||||
|
let fallback_threads =
|
||||||
|
NonZeroUsize::new(FALLBACK_THREADS).expect("fallback_threads must be nonzero");
|
||||||
|
// determine the maximum recommend number of threads to use
|
||||||
|
// most of the time this is gonna be the number of cpus
|
||||||
|
thread::available_parallelism()
|
||||||
|
.unwrap_or(fallback_threads)
|
||||||
|
.get()
|
||||||
|
}
|
||||||
|
|
||||||
|
/// This struct manages a pool of threads with a fixed maximum number.
|
||||||
|
/// Any time a closure is passed to `enqueue` the pool checks whether it can
|
||||||
|
/// directly launch a new thread to execute the closure. If the maximum number
|
||||||
|
/// of threads is reached the closure is staged and will get executed by next
|
||||||
|
/// thread to be available.
|
||||||
|
/// The pool will also keep track of every `JoinHandle` created by running every closure on
|
||||||
|
/// its on thread. The closures can be obtained by either calling `join_all` or `get_finished`.
|
||||||
|
/// # Example
|
||||||
|
/// ```rust
|
||||||
|
/// use imsearch::multithreading::ThreadPool;
|
||||||
|
/// let mut pool = ThreadPool::new();
|
||||||
|
///
|
||||||
|
/// // launch some work in parallel
|
||||||
|
/// for i in 0..10 {
|
||||||
|
/// pool.enqueue(move || {
|
||||||
|
/// println!("I am multithreaded and have id: {i}");
|
||||||
|
/// });
|
||||||
|
/// }
|
||||||
|
/// // wait for threads to finish
|
||||||
|
/// pool.join_all();
|
||||||
|
/// ```
|
||||||
|
/// # Portability
|
||||||
|
/// This implementation is not fully platform independent. This is due to the usage of [`std::sync::atomic::AtomicUsize`].
|
||||||
|
/// This type is used to remove some locks from otherwise used [`std::sync::Mutex`] wrapping a [`usize`].
|
||||||
|
/// Note that atomic primitives are not available on all platforms but "can generally be relied upon existing"
|
||||||
|
/// (see: <https://doc.rust-lang.org/std/sync/atomic/index.html>).
|
||||||
|
/// Additionally this implementation relies on using the `load` and `store` operations
|
||||||
|
/// instead of using more comfortable one like `fetch_add` in order to avoid unnecessary calls
|
||||||
|
/// to `unwrap` or `expected` from [`std::sync::MutexGuard`].
|
||||||
|
///
|
||||||
|
/// # Memory consumption over time
|
||||||
|
/// The pool will store the handle for every thread launched constantly increasing the memory consumption.
|
||||||
|
/// It should be noted that the pool won't perform any kind of cleanup of the stored handles, meaning it is recommended to either make regular calls to
|
||||||
|
/// `join_all` or `get_finished` in order to clear the vector of handles to avoid endless memory consumption.
|
||||||
|
/// Alternatively, you can use the function `with_threads_and_drop_handles` to create a new pool that discard all thread
|
||||||
|
/// handles after the threads are finished. This will automatically reduce the memory consumption of the pool over time.
|
||||||
|
#[allow(dead_code)]
|
||||||
|
#[derive(Debug)]
|
||||||
|
pub struct ThreadPool<F, T>
|
||||||
|
where
|
||||||
|
F: Send + FnOnce() -> T,
|
||||||
|
{
|
||||||
|
/// maximum number of threads to launch at once
|
||||||
|
max_thread_count: usize,
|
||||||
|
/// handles for launched threads
|
||||||
|
handles: Arc<Mutex<Vec<JoinHandle<T>>>>,
|
||||||
|
/// function to be executed when threads are ready
|
||||||
|
queue: Arc<Mutex<VecDeque<F>>>,
|
||||||
|
/// number of currently running threads
|
||||||
|
/// new implementation relies on atomic primitives to avoid locking and possible
|
||||||
|
/// guard errors. Note that atomic primitives are not available on all platforms "can generally be relied upon existing"
|
||||||
|
/// (see: <https://doc.rust-lang.org/std/sync/atomic/index.html>).
|
||||||
|
/// Also this implementation relies on using the `load` and `store` operations
|
||||||
|
/// instead of using more comfortable one like `fetch_add`
|
||||||
|
threads: Arc<AtomicUsize>,
|
||||||
|
/// wether to keep the thread handles after the function returned
|
||||||
|
drop_handles: Arc<AtomicBool>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<F, T> Default for ThreadPool<F, T>
|
||||||
|
where
|
||||||
|
F: Send + FnOnce() -> T,
|
||||||
|
{
|
||||||
|
fn default() -> Self {
|
||||||
|
Self {
|
||||||
|
max_thread_count: get_default_thread_count(),
|
||||||
|
handles: Default::default(),
|
||||||
|
queue: Default::default(),
|
||||||
|
// will be initialized to 0
|
||||||
|
threads: Arc::new(AtomicUsize::new(0)),
|
||||||
|
// do not drop handles by default
|
||||||
|
drop_handles: Arc::new(AtomicBool::new(false)),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[allow(dead_code)]
|
||||||
|
impl<F, T> ThreadPool<F, T>
|
||||||
|
where
|
||||||
|
F: Send + FnOnce() -> T + 'static,
|
||||||
|
T: Send + 'static,
|
||||||
|
{
|
||||||
|
/// Create a new empty thread pool with the maximum number of threads set be the recommended amount of threads
|
||||||
|
/// supplied by [`std::thread::available_parallelism`] or in case the function fails [`FALLBACK_THREADS`].
|
||||||
|
/// # Limitations
|
||||||
|
/// This function may assume the wrong number of threads due to the nature of [`std::thread::available_parallelism`].
|
||||||
|
/// That can happen if the program runs inside of a container or vm with poorly configured parallelism.
|
||||||
|
pub fn new() -> Self {
|
||||||
|
Self {
|
||||||
|
max_thread_count: get_default_thread_count(),
|
||||||
|
..Default::default()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create a new empty thread pool with the maximum number of threads set be the specified number
|
||||||
|
/// # Overusage
|
||||||
|
/// supplying a number of threads to great may negatively impact performance as the system may not
|
||||||
|
/// be able to full fill the required needs
|
||||||
|
pub fn with_threads(max_thread_count: NonZeroUsize) -> Self {
|
||||||
|
Self {
|
||||||
|
max_thread_count: max_thread_count.get(),
|
||||||
|
..Default::default()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create a new empty thread pool with the maximum number of threads set be the specified number
|
||||||
|
/// and also sets the flag to drop the handles of finished threads instead of storing them until
|
||||||
|
/// eihter `join_all` or `get_finished` is called.
|
||||||
|
/// # Overusage
|
||||||
|
/// supplying a number of threads to great may negatively impact performance as the system may not
|
||||||
|
/// be able to full fill the required needs
|
||||||
|
/// # Memory usage
|
||||||
|
/// if `drop_handles` is set to `false` the pool will continue to store the handles of
|
||||||
|
/// launched threads. This causes memory consumption to rise over time as more and more
|
||||||
|
/// threads are launched.
|
||||||
|
pub fn with_threads_and_drop_handles(
|
||||||
|
max_thread_count: NonZeroUsize,
|
||||||
|
drop_handles: bool,
|
||||||
|
) -> Self {
|
||||||
|
Self {
|
||||||
|
max_thread_count: max_thread_count.get(),
|
||||||
|
drop_handles: Arc::new(AtomicBool::new(drop_handles)),
|
||||||
|
..Default::default()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Pass a new closure to be executed as soon as a thread is available.
|
||||||
|
/// This function will execute the supplied closure immediately when the number of running threads
|
||||||
|
/// is lower than the maximum number of threads. Otherwise the closure will be executed at some undetermined time
|
||||||
|
/// in the future unless program doesn't die before.
|
||||||
|
/// If `join_all` is called and the closure hasn't been executed yet, `join_all` will wait for all stalled
|
||||||
|
/// closures be executed.
|
||||||
|
pub fn enqueue(&mut self, closure: F) {
|
||||||
|
// read used thread counter and apply all store operations with Ordering::Release
|
||||||
|
let used_threads = self.threads.load(Ordering::Acquire);
|
||||||
|
// test if we can launch a new thread
|
||||||
|
if used_threads < self.max_thread_count {
|
||||||
|
// we can create a new thread, increment the thread count
|
||||||
|
self.threads
|
||||||
|
.store(used_threads.saturating_add(1), Ordering::Release);
|
||||||
|
// run new thread
|
||||||
|
execute(
|
||||||
|
self.queue.clone(),
|
||||||
|
self.handles.clone(),
|
||||||
|
self.threads.clone(),
|
||||||
|
self.drop_handles.clone(),
|
||||||
|
closure,
|
||||||
|
);
|
||||||
|
} else {
|
||||||
|
// all threads being used
|
||||||
|
// enqueue closure to be launched when a thread is ready
|
||||||
|
self.queue.lock().unwrap().push_back(closure);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Removes all closures stalled for execution.
|
||||||
|
/// All closures still waiting to be executed will be dropped by the pool and
|
||||||
|
/// won't get executed. Useful if an old set of closures hasn't run yet but are outdated
|
||||||
|
/// and resources are required immediately for updated closures.
|
||||||
|
pub fn discard_stalled(&mut self) {
|
||||||
|
self.queue.lock().unwrap().clear();
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Waits for all currently running threads and all stalled closures to be executed.
|
||||||
|
/// If any closure hasn't been executed yet, `join_all` will wait until the queue holding all
|
||||||
|
/// unexecuted closures is empty. It returns the result every `join` of all threads yields as a vector.
|
||||||
|
/// If the vector is of length zero, no threads were joined and the thread pool didn't do anything.
|
||||||
|
/// All handles of threads will be removed after this call.
|
||||||
|
pub fn join_all(&mut self) -> Vec<Result<T, Box<dyn Any + Send>>> {
|
||||||
|
let mut results = Vec::new();
|
||||||
|
loop {
|
||||||
|
// lock the handles, pop the last one off and unlock handles again
|
||||||
|
// to allow running threads to process
|
||||||
|
let handle = self.handles.lock().unwrap().pop();
|
||||||
|
|
||||||
|
// if we still have a handle join it else no handles are left we abort the loop
|
||||||
|
if let Some(handle) = handle {
|
||||||
|
results.push(handle.join());
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
results
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns the results of every thread that has already finished until now.
|
||||||
|
/// All other threads currently running won't be waited for nor for any closure stalled for execution in the future.
|
||||||
|
/// /// If the vector is of length zero, no threads were joined and the thread pool either doesn't do anything or is busy.
|
||||||
|
/// All handles of finished threads will be removed after this call.
|
||||||
|
pub fn get_finished(&mut self) -> Vec<Result<T, Box<dyn Any + Send>>> {
|
||||||
|
let mut results = Vec::new();
|
||||||
|
|
||||||
|
let mut handles = self.handles.lock().unwrap();
|
||||||
|
|
||||||
|
// loop through the handles and remove all finished handles
|
||||||
|
// join on the finished handles which will be quick as they are finished!
|
||||||
|
let mut idx = 0;
|
||||||
|
while idx < handles.len() {
|
||||||
|
if handles[idx].is_finished() {
|
||||||
|
// thread is finished, yield result
|
||||||
|
results.push(handles.remove(idx).join());
|
||||||
|
} else {
|
||||||
|
// thread isn't done, continue to the next one
|
||||||
|
idx += 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
results
|
||||||
|
}
|
||||||
|
|
||||||
|
/// set the flag to indicate that thread handles will be dropped after the thread is finished
|
||||||
|
/// executing. All threads that have finished until now but haven't been removed will get dropped
|
||||||
|
/// after the next thread finishes.
|
||||||
|
pub fn drop_finished_handles(&self) {
|
||||||
|
self.drop_handles.store(false, Ordering::Release);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// set the flag to indicate that thread handles will be kept after the thread is finished
|
||||||
|
/// executing until either `join_all` or `get_finished` is called.
|
||||||
|
/// Only new thread handles created after this call be kept.
|
||||||
|
pub fn keep_future_handles(&self) {
|
||||||
|
self.drop_handles.store(true, Ordering::Release);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Removes all thread handles which have finished only if the can be locked at
|
||||||
|
/// the current time. This function will not block execution when the lock cannot be acquired.
|
||||||
|
fn try_prune<T>(handles: Arc<Mutex<Vec<JoinHandle<T>>>>) {
|
||||||
|
if let Ok(mut handles) = handles.try_lock() {
|
||||||
|
// keep unfinished elements
|
||||||
|
handles.retain(|handle| !handle.is_finished());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Execute the supplied closure on a new thread
|
||||||
|
/// and store the threads handle into `handles`. When the thread
|
||||||
|
/// finished executing the closure it will look for any closures left in `queue` and
|
||||||
|
/// recursively execute it on a new thread. This method updates threads` in order to
|
||||||
|
/// keep track of the number of active threads.
|
||||||
|
fn execute<F, T>(
|
||||||
|
queue: Arc<Mutex<VecDeque<F>>>,
|
||||||
|
handles: Arc<Mutex<Vec<JoinHandle<T>>>>,
|
||||||
|
threads: Arc<AtomicUsize>,
|
||||||
|
drop: Arc<AtomicBool>,
|
||||||
|
closure: F,
|
||||||
|
) where
|
||||||
|
T: Send + 'static,
|
||||||
|
F: Send + FnOnce() -> T + 'static,
|
||||||
|
{
|
||||||
|
let handles_copy = handles.clone();
|
||||||
|
|
||||||
|
handles.lock().unwrap().push(thread::spawn(move || {
|
||||||
|
// run closure (actual work)
|
||||||
|
let result = closure();
|
||||||
|
|
||||||
|
// take the next closure stalled for execution
|
||||||
|
let next = queue.lock().unwrap().pop_front();
|
||||||
|
if let Some(next_closure) = next {
|
||||||
|
// if we have sth. to execute, spawn a new thread
|
||||||
|
execute(
|
||||||
|
queue,
|
||||||
|
handles_copy.clone(),
|
||||||
|
threads,
|
||||||
|
drop.clone(),
|
||||||
|
next_closure,
|
||||||
|
);
|
||||||
|
} else {
|
||||||
|
// nothing to execute this thread will run out without any work to do
|
||||||
|
// decrement the amount of used threads
|
||||||
|
threads.store(
|
||||||
|
threads.load(Ordering::Acquire).saturating_sub(1),
|
||||||
|
Ordering::Release,
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
// try to drop all fnished thread handles if necessary
|
||||||
|
// this is a non blocking operation
|
||||||
|
if drop.load(Ordering::Acquire) {
|
||||||
|
try_prune(handles_copy);
|
||||||
|
}
|
||||||
|
|
||||||
|
result
|
||||||
|
}));
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod tests {
|
||||||
|
use std::time::Duration;
|
||||||
|
|
||||||
|
use super::*;
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_thread_pool() {
|
||||||
|
// auto determine the amount of threads to use
|
||||||
|
let mut pool = ThreadPool::new();
|
||||||
|
|
||||||
|
// launch 4 jobs to run on our pool
|
||||||
|
for i in 0..4 {
|
||||||
|
pool.enqueue(move || (0..=i).sum::<usize>());
|
||||||
|
}
|
||||||
|
|
||||||
|
// wait for the threads to finish and sum their results
|
||||||
|
let sum = pool
|
||||||
|
.join_all()
|
||||||
|
.into_iter()
|
||||||
|
.map(|r| r.unwrap())
|
||||||
|
.sum::<usize>();
|
||||||
|
|
||||||
|
assert_eq!(sum, 10);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_drop_stalled() {
|
||||||
|
// auto determine the amount of threads to use
|
||||||
|
let mut pool = ThreadPool::with_threads(NonZeroUsize::new(1).unwrap());
|
||||||
|
|
||||||
|
// launch 2 jobs: 1 will immediately return, the other one will sleep for 20 seconds
|
||||||
|
for i in 0..1 {
|
||||||
|
pool.enqueue(move || {
|
||||||
|
thread::sleep(Duration::from_secs(i * 20));
|
||||||
|
i
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
// wait 10 secs
|
||||||
|
thread::sleep(Duration::from_secs(2));
|
||||||
|
// discard job that should still run
|
||||||
|
pool.discard_stalled();
|
||||||
|
|
||||||
|
// wait for the threads to finish and sum their results
|
||||||
|
let sum = pool.join_all().into_iter().map(|r| r.unwrap()).sum::<u64>();
|
||||||
|
|
||||||
|
assert_eq!(sum, 0);
|
||||||
|
}
|
||||||
|
}
|
Loading…
Reference in New Issue