gemstone/src/set/set.c

2051 lines
67 KiB
C

#include <io/files.h>
#include <yacc/parser.tab.h>
#include <complex.h>
#include <stdio.h>
#include <ast/ast.h>
#include <set/types.h>
#include <stdlib.h>
#include <string.h>
#include <sys/log.h>
#include <glib.h>
#include <assert.h>
#include <set/set.h>
#include <mem/cache.h>
extern ModuleFile *current_file;
static GHashTable *declaredComposites = NULL;//pointer to composites with names
static GHashTable *declaredBoxes = NULL;//pointer to typeboxes
static GHashTable *functionParameter = NULL;
static GArray *Scope = NULL;//list of hashtables. last Hashtable is current depth of program. hashtable key: ident, value: Variable* to var
const Type ShortShortUnsingedIntType = {
.kind = TypeKindComposite,
.impl = {
.composite = {
.sign = Unsigned,
.scale = 0.25,
.primitive = Int
}
},
.nodePtr = NULL,
};
const Type StringLiteralType = {
.kind = TypeKindReference,
.impl = {
.reference = (ReferenceType) &ShortShortUnsingedIntType,
},
.nodePtr = NULL,
};
/**
* @brief Convert a string into a sign typ
* @return 0 on success, 1 otherwise
*/
int sign_from_string(const char *string, Sign *sign) {
assert(string != NULL);
assert(sign != NULL);
if (strcmp(string, "unsigned") == 0) {
*sign = Unsigned;
return SEMANTIC_OK;
}
if (strcmp(string, "signed") == 0) {
*sign = Signed;
return SEMANTIC_OK;
}
return SEMANTIC_ERROR;
}
/**
* @brief Convert a string into a primitive type
* @return 0 on success, 1 otherwise
*/
int primitive_from_string(const char *string, PrimitiveType *primitive) {
assert(string != NULL);
assert(primitive != NULL);
DEBUG("find primitive in string");
if (strcmp(string, "int") == 0) {
*primitive = Int;
return SEMANTIC_OK;
}
if (strcmp(string, "float") == 0) {
*primitive = Float;
return SEMANTIC_OK;
}
return SEMANTIC_ERROR;
}
int scale_factor_from(const char *string, double *factor) {
assert(string != NULL);
assert(factor != NULL);
if (strcmp(string, "half") == 0 || strcmp(string, "short") == 0) {
*factor = 0.5;
return SEMANTIC_OK;
}
if (strcmp(string, "double") == 0 || strcmp(string, "long") == 0) {
*factor = 2.0;
return SEMANTIC_OK;
}
return SEMANTIC_ERROR;
}
int check_scale_factor(AST_NODE_PTR node, Scale scale) {
assert(node != NULL);
if (8 < scale) {
print_diagnostic(current_file, &node->location, Error, "Composite scale overflow");
return SEMANTIC_ERROR;
}
if (0.25 > scale) {
print_diagnostic(current_file, &node->location, Error, "Composite scale underflow");
return SEMANTIC_ERROR;
}
return SEMANTIC_OK;
}
int merge_scale_list(AST_NODE_PTR scale_list, Scale *scale) {
assert(scale_list != NULL);
assert(scale != NULL);
for (size_t i = 0; i < scale_list->child_count; i++) {
double scale_in_list = 1.0;
int scale_invalid = scale_factor_from(AST_get_node(scale_list, i)->value, &scale_in_list);
if (scale_invalid == SEMANTIC_ERROR) {
return SEMANTIC_ERROR;
}
*scale *= scale_in_list;
}
return SEMANTIC_OK;
}
/**
* @brief Get an already declared type from its name
*/
int get_type_decl(const char *name, Type **type) {
assert(name != NULL);
assert(type != NULL);
if (g_hash_table_contains(declaredComposites, name) == TRUE) {
*type = (Type *) g_hash_table_lookup(declaredComposites, name);
return SEMANTIC_OK;
}
return SEMANTIC_ERROR;
}
int set_impl_composite_type(AST_NODE_PTR ast_type, CompositeType *composite) {
assert(ast_type != NULL);
assert(composite != NULL);
DEBUG("Type is a Composite");
int status = SEMANTIC_OK;
int scaleNodeOffset = 0;
composite->sign = Signed;
// check if we have a sign
if (AST_Sign == ast_type->children[0]->kind) {
status = sign_from_string(ast_type->children[0]->value, &composite->sign);
if (status == SEMANTIC_ERROR) {
ERROR("invalid sign: %s", ast_type->children[0]->value);
return SEMANTIC_ERROR;
}
scaleNodeOffset++;
}
composite->scale = 1.0;
// check if we have a list of scale factors
if (ast_type->children[scaleNodeOffset]->kind == AST_List) {
status = merge_scale_list(ast_type->children[scaleNodeOffset], &composite->scale);
if (status == SEMANTIC_ERROR) {
return SEMANTIC_ERROR;
}
}
AST_NODE_PTR typeKind = ast_type->children[ast_type->child_count - 1];
status = primitive_from_string(typeKind->value, &composite->primitive);
// type kind is not primitve, must be a predefined composite
if (status == SEMANTIC_ERROR) {
// not a primitive try to resolve the type by name (must be a composite)
Type *nested_type = NULL;
status = get_type_decl(typeKind->value, &nested_type);
if (status == SEMANTIC_ERROR) {
print_diagnostic(current_file, &typeKind->location, Error, "Unknown composite type in declaration");
return SEMANTIC_ERROR;
}
if (nested_type->kind == TypeKindComposite) {
// valid composite type
composite->primitive = nested_type->impl.composite.primitive;
// no sign was set, use sign of type
if (scaleNodeOffset == 0) {
composite->sign = nested_type->impl.composite.sign;
}
composite->scale = composite->scale * nested_type->impl.composite.scale;
} else {
print_diagnostic(current_file, &typeKind->location, Error, "Type must be either composite or primitive");
return SEMANTIC_ERROR;
}
}
return check_scale_factor(ast_type, composite->scale);
}
/**
* @brief Converts the given AST node to a gemstone type implementation.
* @param currentNode AST node of type kind type
* @param type pointer output for the type
* @return the gemstone type implementation
*/
int set_get_type_impl(AST_NODE_PTR currentNode, Type **type) {
assert(currentNode != NULL);
assert(currentNode->kind == AST_Type);
assert(currentNode->child_count > 0);
DEBUG("start Type");
int status;
const char *typekind = currentNode->children[currentNode->child_count - 1]->value;
//find type in composites
if (g_hash_table_contains(declaredComposites, typekind) == TRUE) {
*type = g_hash_table_lookup(declaredComposites, typekind);
return SEMANTIC_OK;
//TODO change composite based on other nodes
}
if (g_hash_table_contains(declaredBoxes, typekind) == TRUE) {
*type = g_hash_table_lookup(declaredBoxes, typekind);
if(currentNode->child_count > 1) {
//TODO free
return SEMANTIC_ERROR;
}
return SEMANTIC_OK;
}
// type is not yet declared, make a new one
Type *new_type = mem_alloc(MemoryNamespaceSet, sizeof(Type));
new_type->nodePtr = currentNode;
// only one child means either composite or primitive
// try to implement primitive first
// if not successfull continue building a composite
if (currentNode->child_count == 1) {
// type is a primitive
new_type->kind = TypeKindPrimitive;
status = primitive_from_string(typekind, &new_type->impl.primitive);
// if err continue at composite construction
if (status == SEMANTIC_OK) {
*type = new_type;
return SEMANTIC_OK;
}
return SEMANTIC_ERROR;
}
new_type->kind = TypeKindComposite;
new_type->impl.composite.nodePtr = currentNode;
status = set_impl_composite_type(currentNode, &new_type->impl.composite);
*type = new_type;
return status;
}
StorageQualifier Qualifier_from_string(const char *str) {
assert(str != NULL);
if (strcmp(str, "local") == 0)
return Local;
if (strcmp(str, "static") == 0)
return Static;
if (strcmp(str, "global") == 0)
return Global;
PANIC("Provided string is not a storagequalifier: %s", str);
}
int addVarToScope(Variable *variable);
int createRef(AST_NODE_PTR currentNode, Type** reftype) {
assert(currentNode != NULL);
assert(currentNode->child_count == 1);
assert(AST_get_node(currentNode,0)->kind == AST_Type);
Type * type = malloc(sizeof(Type));
Type * referenceType = malloc(sizeof(Type));
referenceType->kind = TypeKindReference;
referenceType->nodePtr = currentNode;
int signal = set_get_type_impl(currentNode->children[0], &type);
if(signal) {
//TODO free type
return SEMANTIC_ERROR;
}
referenceType->impl.reference = type;
*reftype = referenceType;
return SEMANTIC_OK;
}
int createDecl(AST_NODE_PTR currentNode, GArray **variables) {
DEBUG("create declaration");
AST_NODE_PTR ident_list = currentNode->children[currentNode->child_count - 1];
*variables = mem_new_g_array(MemoryNamespaceSet, sizeof(Variable *));
VariableDeclaration decl;
decl.nodePtr = currentNode;
decl.qualifier = Static;
int status = SEMANTIC_OK;
DEBUG("Child Count: %i", currentNode->child_count);
for (size_t i = 0; i < currentNode->child_count; i++) {
switch (currentNode->children[i]->kind) {
case AST_Storage:
DEBUG("fill Qualifier");
decl.qualifier = Qualifier_from_string(AST_get_node(currentNode,i)->value);
break;
case AST_Type:
DEBUG("fill Type");
status = set_get_type_impl(AST_get_node(currentNode, i), &decl.type);
break;
case AST_IdentList:
break;
case AST_Reference:
status = createRef(AST_get_node(currentNode,i), &decl.type);
break;
default:
PANIC("invalid node type: %ld", currentNode->children[i]->kind);
break;
}
}
for (size_t i = 0; i < ident_list->child_count; i++) {
Variable *variable = mem_alloc(MemoryNamespaceSet, sizeof(Variable));
variable->kind = VariableKindDeclaration;
variable->nodePtr = currentNode;
variable->name = ident_list->children[i]->value;
variable->impl.declaration = decl;
g_array_append_val(*variables, variable);
int signal = addVarToScope(variable);
if (signal) {
return SEMANTIC_ERROR;
}
}
return status;
}
Expression *createExpression(AST_NODE_PTR currentNode);
int createDef(AST_NODE_PTR currentNode, GArray **variables) {
assert(variables != NULL);
assert(currentNode != NULL);
assert(currentNode->kind == AST_Def);
DEBUG("create definition");
AST_NODE_PTR declaration = currentNode->children[0];
AST_NODE_PTR expression = currentNode->children[1];
AST_NODE_PTR ident_list = declaration->children[currentNode->child_count - 1];
*variables = mem_new_g_array(MemoryNamespaceSet, sizeof(Variable *));
VariableDeclaration decl;
VariableDefiniton def;
def.nodePtr = currentNode;
decl.qualifier = Static;
decl.nodePtr = AST_get_node(currentNode, 0);
int status = SEMANTIC_OK;
DEBUG("Child Count: %i", declaration->child_count);
for (size_t i = 0; i < declaration->child_count; i++) {
switch (declaration->children[i]->kind) {
case AST_Storage:
DEBUG("fill Qualifier");
decl.qualifier = Qualifier_from_string(declaration->children[i]->value);
break;
case AST_Type:
DEBUG("fill Type");
status = set_get_type_impl(declaration->children[i], &decl.type);
break;
case AST_IdentList:
break;
default:
PANIC("invalid node type: %ld", declaration->children[i]->kind);
break;
}
}
def.declaration = decl;
Expression *name = createExpression(expression);
if (name == NULL) {
status = SEMANTIC_OK;
}
def.initializer = name;
for (size_t i = 0; i < ident_list->child_count; i++) {
Variable *variable = mem_alloc(MemoryNamespaceSet, sizeof(Variable));
variable->kind = VariableKindDefinition;
variable->nodePtr = currentNode;
variable->name = ident_list->children[i]->value;
variable->impl.definiton = def;
g_array_append_val(*variables, variable);
if (addVarToScope(variable) == SEMANTIC_ERROR) {
return SEMANTIC_ERROR;
}
}
return status;
}
int getVariableFromScope(const char *name, Variable **variable) {
assert(name != NULL);
assert(variable != NULL);
assert(Scope != NULL);
DEBUG("getting var from scope");
int found = 0;
// loop through all variable scope and find a variable
if(functionParameter != NULL) {
if(g_hash_table_contains(functionParameter, name)) {
*variable = g_hash_table_lookup(functionParameter, name);
found += 1;
}
}
for(size_t i = 0; i < Scope->len; i++) {
GHashTable* variable_table = g_array_index(Scope,GHashTable* ,i );
if(g_hash_table_contains(variable_table, name)) {
if(found == 0){
*variable = g_hash_table_lookup(variable_table, name);
}
found += 1;
}
}
if (found == 1){
DEBUG("Var: %s",(*variable)->name);
DEBUG("Var Typekind: %d", (*variable)->kind);
DEBUG("Found var");
return SEMANTIC_OK;
}else if (found > 1) {
WARN("Variable %s is a parameter and a declared variable. Returning parameter", name);
return SEMANTIC_OK;
}
DEBUG("nothing found");
return SEMANTIC_ERROR;
}
int addVarToScope(Variable * variable){
Variable* tmp = NULL;
if(getVariableFromScope(variable->name, &tmp) == SEMANTIC_OK) {
INFO("this var already exist: ", variable->name);
return SEMANTIC_ERROR;
}
GHashTable * currentScope = g_array_index(Scope,GHashTable* ,Scope->len -1);
g_hash_table_insert(currentScope, (gpointer) variable->name, variable);
return SEMANTIC_OK;
}
int fillTablesWithVars(GHashTable *variableTable, const GArray* variables) {
DEBUG("filling vars in scope and table");
for(size_t i = 0; i < variables->len; i++) {
Variable* var = g_array_index(variables,Variable *,i);
// this variable is discarded, only need status code
if(g_hash_table_contains(variableTable, (gpointer)var->name)){
return SEMANTIC_ERROR;
}
g_hash_table_insert(variableTable, (gpointer) var->name, var);
}
return SEMANTIC_OK;
}
[[nodiscard("type must be freed")]]
TypeValue createTypeValue(AST_NODE_PTR currentNode){
DEBUG("create TypeValue");
TypeValue value;
Type *type = mem_alloc(MemoryNamespaceSet,sizeof(Type));
value.type = type;
type->kind = TypeKindPrimitive;
type->nodePtr = currentNode;
switch (currentNode->kind) {
case AST_Int:
type->impl.primitive = Int;
break;
case AST_Float:
type->impl.primitive = Float;
break;
default:
PANIC("Node is not an expression but from kind: %i", currentNode->kind);
break;
}
value.nodePtr = currentNode;
value.value = currentNode->value;
return value;
}
#define CLONE(x) mem_clone(MemoryNamespaceSet, (void*)&(x), sizeof(x))
TypeValue createString(AST_NODE_PTR currentNode) {
DEBUG("create String");
TypeValue value;
Type *type = CLONE(StringLiteralType);
value.type = type;
value.nodePtr = currentNode;
value.value = currentNode->value;
return value;
}
Type* createTypeFromOperands(Type* LeftOperandType, Type* RightOperandType, AST_NODE_PTR currentNode) {
DEBUG("create type from operands");
Type *result = mem_alloc(MemoryNamespaceSet,sizeof(Type));
result->nodePtr = currentNode;
DEBUG("LeftOperandType->kind: %i", LeftOperandType->kind);
DEBUG("RightOperandType->kind: %i", RightOperandType->kind);
if (LeftOperandType->kind == TypeKindComposite && RightOperandType->kind == TypeKindComposite) {
result->kind = TypeKindComposite;
CompositeType resultImpl;
resultImpl.nodePtr = currentNode;
resultImpl.sign = MAX(LeftOperandType->impl.composite.sign, RightOperandType->impl.composite.sign);
resultImpl.scale = MAX(LeftOperandType->impl.composite.scale, RightOperandType->impl.composite.scale);
resultImpl.primitive = MAX(LeftOperandType->impl.composite.primitive , RightOperandType->impl.composite.primitive);
result->impl.composite = resultImpl;
} else if (LeftOperandType->kind == TypeKindPrimitive && RightOperandType->kind == TypeKindPrimitive) {
DEBUG("both operands are primitive");
result->kind = TypeKindPrimitive;
result->impl.primitive = MAX(LeftOperandType->impl.primitive , RightOperandType->impl.primitive);
} else if (LeftOperandType->kind == TypeKindPrimitive && RightOperandType->kind == TypeKindComposite) {
result->kind = TypeKindComposite;
result->impl.composite.sign = Signed;
result->impl.composite.scale = MAX(1.0, RightOperandType->impl.composite.scale);
result->impl.composite.primitive = MAX(Int, RightOperandType->impl.composite.primitive);
result->impl.composite.nodePtr = currentNode;
} else if (LeftOperandType->kind == TypeKindComposite && RightOperandType->kind == TypeKindPrimitive) {
result->kind = TypeKindComposite;
result->impl.composite.sign = Signed;
result->impl.composite.scale = MAX(1.0, LeftOperandType->impl.composite.scale);
result->impl.composite.primitive = MAX(Int, LeftOperandType->impl.composite.primitive);
result->impl.composite.nodePtr = currentNode;
} else {
mem_free(result);
return NULL;
}
DEBUG("Succsessfully created type");
return result;
}
int createArithOperation(Expression* ParentExpression, AST_NODE_PTR currentNode, [[maybe_unused]] size_t expectedChildCount) {
DEBUG("create arithmetic operation");
ParentExpression->impl.operation.kind = Arithmetic;
ParentExpression->impl.operation.nodePtr = currentNode;
ParentExpression->impl.operation.operands = g_array_new(FALSE, FALSE,sizeof(Expression*));
assert(expectedChildCount == currentNode->child_count);
for (size_t i = 0; i < currentNode->child_count; i++) {
Expression* expression = createExpression(currentNode->children[i]);
if(NULL == expression) {
return SEMANTIC_ERROR;
}
g_array_append_val(ParentExpression->impl.operation.operands, expression);
}
DEBUG("created all Expressions");
switch (currentNode->kind) {
case AST_Add:
ParentExpression->impl.operation.impl.arithmetic = Add;
break;
case AST_Sub:
ParentExpression->impl.operation.impl.arithmetic = Sub;
break;
case AST_Mul:
ParentExpression->impl.operation.impl.arithmetic = Mul;
break;
case AST_Div:
ParentExpression->impl.operation.impl.arithmetic = Div;
break;
case AST_Negate:
ParentExpression->impl.operation.impl.arithmetic = Negate;
break;
default:
PANIC("Current node is not an arithmetic operater");
break;
}
if (ParentExpression->impl.operation.impl.arithmetic == Negate) {
Type* result = g_array_index(ParentExpression->impl.operation.operands,Expression *,0)->result;
result->nodePtr = currentNode;
if (result->kind == TypeKindReference || result->kind == TypeKindBox) {
print_diagnostic(current_file, &currentNode->location, Error, "Invalid type for arithmetic operation");
return SEMANTIC_ERROR;
} else if(result->kind == TypeKindComposite) {
result->impl.composite.sign = Signed;
}
ParentExpression->result = result;
} else {
Type* LeftOperandType = g_array_index(ParentExpression->impl.operation.operands,Expression *,0)->result;
Type* RightOperandType = g_array_index(ParentExpression->impl.operation.operands,Expression *,1)->result;
ParentExpression->result = createTypeFromOperands(LeftOperandType, RightOperandType, currentNode);
}
if (ParentExpression->result == NULL) {
return SEMANTIC_ERROR;
}
return SEMANTIC_OK;
}
int createRelationalOperation(Expression* ParentExpression, AST_NODE_PTR currentNode) {
// fill kind and Nodeptr
ParentExpression->impl.operation.kind = Relational;
ParentExpression->impl.operation.nodePtr = currentNode;
ParentExpression->impl.operation.operands = g_array_new(FALSE,FALSE,sizeof(Expression*));
// fill Operands
for (size_t i = 0; i < currentNode->child_count; i++) {
Expression* expression = createExpression(currentNode->children[i]);
if(NULL == expression){
return SEMANTIC_ERROR;
}
g_array_append_val(ParentExpression->impl.operation.operands, expression);
}
// fill impl
switch (currentNode->kind) {
case AST_Eq:
ParentExpression->impl.operation.impl.relational = Equal;
break;
case AST_Less:
ParentExpression->impl.operation.impl.relational = Greater;
break;
case AST_Greater:
ParentExpression->impl.operation.impl.relational= Less;
break;
default:
PANIC("Current node is not an relational operater");
break;
}
Type* result = mem_alloc(MemoryNamespaceSet,sizeof(Type));
result->impl.primitive = Int;
result->kind = TypeKindPrimitive;
result->nodePtr = currentNode;
ParentExpression->result = result;
return 0;
}
int createBoolOperation(Expression *ParentExpression, AST_NODE_PTR currentNode) {
// fill kind and Nodeptr
ParentExpression->impl.operation.kind = Boolean;
ParentExpression->impl.operation.nodePtr = currentNode;
// fill Operands
for (size_t i = 0; i < currentNode->child_count; i++){
Expression* expression = createExpression(currentNode->children[i]);
if (NULL == expression) {
return SEMANTIC_ERROR;
}
g_array_append_val(ParentExpression->impl.operation.operands, expression);
}
switch (currentNode->kind) {
case AST_BoolAnd:
ParentExpression->impl.operation.impl.boolean = BooleanAnd;
break;
case AST_BoolOr:
ParentExpression->impl.operation.impl.boolean = BooleanOr;
break;
case AST_BoolXor:
ParentExpression->impl.operation.impl.boolean = BooleanXor;
break;
default:
PANIC("Current node is not an boolean operater");
break;
}
Expression* lhs = ((Expression**) ParentExpression->impl.operation.operands->data)[0];
Expression* rhs = ((Expression**) ParentExpression->impl.operation.operands->data)[1];
Type* LeftOperandType = lhs->result;
Type* RightOperandType = rhs->result;
// should not be a box or a reference
if(LeftOperandType->kind != TypeKindPrimitive && LeftOperandType->kind != TypeKindComposite) {
print_diagnostic(current_file, &lhs->nodePtr->location, Error, "invalid type for boolean operation");
return SEMANTIC_ERROR;
}
if(RightOperandType->kind != TypeKindPrimitive && RightOperandType->kind != TypeKindComposite) {
print_diagnostic(current_file, &rhs->nodePtr->location, Error, "invalid type for boolean operation");
return SEMANTIC_ERROR;
}
// should not be a float
if (LeftOperandType->kind == TypeKindComposite) {
if (LeftOperandType->impl.composite.primitive == Float) {
print_diagnostic(current_file, &lhs->nodePtr->location, Error, "operand must not be a float");
return SEMANTIC_ERROR;
}
} else if (LeftOperandType->kind == TypeKindPrimitive) {
if (LeftOperandType->impl.primitive == Float) {
print_diagnostic(current_file, &lhs->nodePtr->location, Error, "operand must not be a float");
return SEMANTIC_ERROR;
}
} else if (RightOperandType->kind == TypeKindComposite) {
if (RightOperandType->impl.composite.primitive == Float) {
print_diagnostic(current_file, &rhs->nodePtr->location, Error, "operand must not be a float");
return SEMANTIC_ERROR;
}
} else if (RightOperandType->kind == TypeKindPrimitive) {
if (RightOperandType->impl.primitive == Float) {
print_diagnostic(current_file, &rhs->nodePtr->location, Error, "operand must not be a float");
return SEMANTIC_ERROR;
}
}
ParentExpression->result = createTypeFromOperands(LeftOperandType, RightOperandType, currentNode);
return SEMANTIC_OK;
}
int createBoolNotOperation(Expression *ParentExpression, AST_NODE_PTR currentNode) {
//fill kind and Nodeptr
ParentExpression->impl.operation.kind = Boolean;
ParentExpression->impl.operation.nodePtr = currentNode;
//fill Operand
Expression* expression = createExpression(currentNode->children[0]);
if(NULL == expression){
return SEMANTIC_ERROR;
}
g_array_append_val(ParentExpression->impl.operation.operands , expression);
ParentExpression->impl.operation.impl.boolean = BooleanNot;
Type* Operand = ((Expression**)ParentExpression->impl.operation.operands)[0]->result;
Type* result = mem_alloc(MemoryNamespaceSet,sizeof(Type));
result->nodePtr = currentNode;
if (Operand->kind == TypeKindBox || Operand->kind == TypeKindReference) {
print_diagnostic(current_file, &Operand->nodePtr->location, Error, "Operand must be a variant of primitive type int");
return SEMANTIC_ERROR;
}
if (Operand->kind == TypeKindPrimitive) {
if (Operand->impl.primitive == Float) {
print_diagnostic(current_file, &Operand->nodePtr->location, Error, "Operand must be a variant of primitive type int");
return SEMANTIC_ERROR;
}
result->kind = Operand->kind;
result->impl = Operand->impl;
} else if(Operand->kind == TypeKindComposite) {
if (Operand->impl.composite.primitive == Float) {
print_diagnostic(current_file, &Operand->nodePtr->location, Error, "Operand must be a variant of primitive type int");
return SEMANTIC_ERROR;
}
result->kind = Operand->kind;
result->impl = Operand->impl;
}
ParentExpression->result = result;
return SEMANTIC_OK;
}
bool isScaleEqual(double leftScale, double rightScale) {
int leftIntScale = (int) (leftScale * BASE_BYTES);
int rightIntScale = (int) (rightScale * BASE_BYTES);
return leftIntScale == rightIntScale;
}
int createBitOperation(Expression* ParentExpression, AST_NODE_PTR currentNode) {
// fill kind and Nodeptr
ParentExpression->impl.operation.kind = Boolean;
ParentExpression->impl.operation.nodePtr = currentNode;
// fill Operands
for (size_t i = 0; i < currentNode->child_count; i++) {
Expression* expression = createExpression(currentNode->children[i]);
if(NULL == expression) {
return SEMANTIC_ERROR;
}
g_array_append_val(ParentExpression->impl.operation.operands , expression);
}
switch (currentNode->kind) {
case AST_BitAnd:
ParentExpression->impl.operation.impl.bitwise = BitwiseAnd;
break;
case AST_BitOr:
ParentExpression->impl.operation.impl.bitwise = BitwiseOr;
break;
case AST_BitXor:
ParentExpression->impl.operation.impl.bitwise = BitwiseXor;
break;
default:
PANIC("Current node is not an bitwise operater");
break;
}
Type *result = mem_alloc(MemoryNamespaceSet,sizeof(Type));
result->nodePtr = currentNode;
Expression* lhs = ((Expression**) ParentExpression->impl.operation.operands->data)[0];
Expression* rhs = ((Expression**) ParentExpression->impl.operation.operands->data)[1];
Type* LeftOperandType = lhs->result;
Type* RightOperandType = rhs->result;
//should not be a box or a reference
if (LeftOperandType->kind != TypeKindPrimitive && LeftOperandType->kind != TypeKindComposite) {
print_diagnostic(current_file, &lhs->nodePtr->location, Error, "Must be a type variant of int");
return SEMANTIC_ERROR;
}
if (RightOperandType->kind != TypeKindPrimitive && RightOperandType->kind != TypeKindComposite) {
print_diagnostic(current_file, &rhs->nodePtr->location, Error, "Must be a type variant of int");
return SEMANTIC_ERROR;
}
if (LeftOperandType->kind == TypeKindPrimitive && RightOperandType->kind == TypeKindPrimitive) {
if (LeftOperandType->impl.primitive == Float) {
print_diagnostic(current_file, &lhs->nodePtr->location, Error, "Must be a type variant of int");
return SEMANTIC_ERROR;
}
if (RightOperandType->impl.primitive == Float) {
print_diagnostic(current_file, &rhs->nodePtr->location, Error, "Must be a type variant of int");
return SEMANTIC_ERROR;
}
result->kind = TypeKindPrimitive;
result->impl.primitive = Int;
} else if (LeftOperandType->kind == TypeKindPrimitive && RightOperandType->kind == TypeKindComposite) {
if (LeftOperandType->impl.primitive == Float) {
print_diagnostic(current_file, &lhs->nodePtr->location, Error, "Must be a type variant of int");
return SEMANTIC_ERROR;
}
if (RightOperandType->impl.composite.primitive == Float) {
print_diagnostic(current_file, &rhs->nodePtr->location, Error, "Must be a type variant of int");
return SEMANTIC_ERROR;
}
result->kind = TypeKindPrimitive;
result->impl.primitive = Int;
}else if (LeftOperandType->kind == TypeKindComposite && RightOperandType->kind == TypeKindPrimitive) {
if (LeftOperandType->impl.composite.primitive == Float) {
print_diagnostic(current_file, &lhs->nodePtr->location, Error, "Must be a type variant of int");
return SEMANTIC_ERROR;
}
if (RightOperandType->impl.primitive == Float) {
print_diagnostic(current_file, &rhs->nodePtr->location, Error, "Must be a type variant of int");
return SEMANTIC_ERROR;
}
result->kind = TypeKindPrimitive;
result->impl.primitive = Int;
} else {
if (RightOperandType->impl.composite.primitive == Float) {
print_diagnostic(current_file, &rhs->nodePtr->location, Error, "Must be a type variant of int");
return SEMANTIC_ERROR;
}
if (LeftOperandType->impl.composite.primitive == Float) {
print_diagnostic(current_file, &lhs->nodePtr->location, Error, "Must be a type variant of int");
return SEMANTIC_ERROR;
}
if (!isScaleEqual(LeftOperandType->impl.composite.scale, RightOperandType->impl.composite.scale)) {
print_diagnostic(current_file, &currentNode->location, Error, "Operands must be of equal size");
return SEMANTIC_ERROR;
}
result->kind = TypeKindComposite;
result->impl.composite.nodePtr = currentNode;
result->impl.composite.scale = LeftOperandType->impl.composite.scale;
result->impl.composite.sign = MAX(LeftOperandType->impl.composite.sign, RightOperandType->impl.composite.sign);
}
ParentExpression->result = result;
return 0;
}
int createBitNotOperation(Expression* ParentExpression, AST_NODE_PTR currentNode) {
//fill kind and Nodeptr
ParentExpression->impl.operation.kind = Bitwise;
ParentExpression->impl.operation.nodePtr = currentNode;
//fill Operand
Expression* expression = createExpression(currentNode->children[0]);
if(NULL == expression){
return SEMANTIC_ERROR;
}
g_array_append_val(ParentExpression->impl.operation.operands , expression);
ParentExpression->impl.operation.impl.bitwise = BitwiseNot;
Type* Operand = ((Expression**) ParentExpression->impl.operation.operands)[0]->result;
Type* result = mem_alloc(MemoryNamespaceSet,sizeof(Type));
result->nodePtr = currentNode;
if (Operand->kind == TypeKindPrimitive) {
if (Operand->impl.primitive == Float) {
print_diagnostic(current_file, &Operand->nodePtr->location, Error, "Operand type must be a variant of int");
return SEMANTIC_ERROR;
}
result->kind = TypeKindPrimitive;
result->impl.primitive = Int;
}else if(Operand->kind == TypeKindComposite) {
if (Operand->impl.composite.primitive == Float) {
print_diagnostic(current_file, &Operand->nodePtr->location, Error, "Operand type must be a variant of int");
return SEMANTIC_ERROR;
}
result->kind = TypeKindComposite;
result->impl.composite.nodePtr = currentNode;
result->impl.composite.primitive = Int;
result->impl.composite.sign = Operand->impl.composite.sign;
result->impl.composite.scale = Operand->impl.composite.scale;
}
ParentExpression->result = result;
return SEMANTIC_OK;
}
/**
* @brief Return a copy of all BoxMembers specified by their name in names from a boxes type
* Will run recursively in case the first name refers to a subbox
* @param currentBoxType
* @param names
* @return
*/
GArray *getBoxMember(Type *currentBoxType, GArray *names) {
GArray *members = mem_new_g_array(MemoryNamespaceSet, sizeof(BoxMember));
// list of members of the type
GHashTable *memberList = currentBoxType->impl.box->member;
// name of member to extract
const char *currentName = g_array_index(names, const char *, 0);
// look for member of this name
if (g_hash_table_contains(memberList, currentName)) {
// get member and store in array
BoxMember *currentMember = g_hash_table_lookup(memberList, currentName);
g_array_append_val(members, currentMember);
// last name in list, return
g_array_remove_index(names, 0);
if (names->len == 0) {
return members;
}
// other names may refer to members of child boxes
if (currentMember->type->kind == TypeKindBox) {
GArray *otherMember = getBoxMember(currentMember->type, names);
if (NULL == otherMember) {
return NULL;
}
g_array_append_vals(members, (BoxMember *) otherMember->data, otherMember->len);
return members;
}
}
return NULL;
}
int createBoxAccess(Expression* ParentExpression,AST_NODE_PTR currentNode) {
const char* boxname = currentNode->children[0]->value;
Variable* boxVariable = NULL;
int status = getVariableFromScope(boxname, &boxVariable);
if(status == SEMANTIC_ERROR){
print_diagnostic(current_file, &currentNode->children[0]->location, Error, "Variable of name `%s` does not exist");
return SEMANTIC_ERROR;
}
Type* boxType;
if(boxVariable->kind == VariableKindDeclaration){
boxType = boxVariable->impl.declaration.type;
} else if (boxVariable->kind == VariableKindDefinition){
boxType = boxVariable->impl.definiton.declaration.type;
} else{
return SEMANTIC_ERROR;
}
if (boxType->kind != TypeKindBox) {
return SEMANTIC_ERROR;
}
// filling boxAccess variable
ParentExpression->impl.variable->kind = VariableKindBoxMember;
ParentExpression->impl.variable->nodePtr = currentNode;
ParentExpression->impl.variable->name = NULL;
ParentExpression->impl.variable->impl.member.nodePtr = currentNode;
//filling boxacces.variable
ParentExpression->impl.variable->impl.member.variable = boxVariable;
//first one is the box itself
GArray* names = mem_alloc(MemoryNamespaceSet,sizeof(GArray));
if(currentNode->kind == AST_IdentList){
for (size_t i = 1; i < currentNode->child_count; i++){
g_array_append_val(names, currentNode->children[i]->value);
}
}else if(currentNode->kind == AST_List){
for (size_t i = 1; i < currentNode->children[1]->child_count; i++){
g_array_append_val(names, currentNode->children[1]->children[i]->value);
}
}else{
PANIC("current Node is not an Access");
}
GArray * boxMember = getBoxMember(boxType, names);
ParentExpression->impl.variable->impl.member.member = boxMember;
ParentExpression->result = g_array_index(boxMember,BoxMember,boxMember->len).type;
return SEMANTIC_OK;
}
int createTypeCast(Expression* ParentExpression, AST_NODE_PTR currentNode){
DEBUG("create type cast");
ParentExpression->impl.typecast.nodePtr = currentNode;
ParentExpression->impl.typecast.operand = createExpression(currentNode->children[0]);
if (ParentExpression->impl.typecast.operand == NULL){
return SEMANTIC_ERROR;
}
if (ParentExpression->impl.typecast.operand->result->kind != TypeKindComposite
&& ParentExpression->impl.typecast.operand->result->kind != TypeKindPrimitive){
//TODO free everything
return SEMANTIC_ERROR;
}
Type *target = mem_alloc(MemoryNamespaceSet, sizeof(Type));
int status = set_get_type_impl(currentNode->children[1], &target);
if (status) {
print_diagnostic(current_file, &currentNode->children[1]->location, Error, "Unknown type");
return SEMANTIC_ERROR;
}
ParentExpression->impl.typecast.targetType = target;
ParentExpression->result = target;
return SEMANTIC_OK;
}
int createTransmute(Expression* ParentExpression, AST_NODE_PTR currentNode){
ParentExpression->impl.transmute.nodePtr = currentNode;
ParentExpression->impl.transmute.operand = createExpression(currentNode->children[0]);
if (ParentExpression->impl.transmute.operand == NULL){
return SEMANTIC_ERROR;
}
Type* target = mem_alloc(MemoryNamespaceSet,sizeof(Type));
int status = set_get_type_impl(currentNode->children[1], &target);
if (status){
print_diagnostic(current_file, &currentNode->children[1]->location, Error, "Unknown type");
return SEMANTIC_ERROR;
}
ParentExpression->impl.typecast.targetType = target;
ParentExpression->result = target;
return SEMANTIC_OK;
}
int createDeref(Expression* ParentExpression, AST_NODE_PTR currentNode) {
assert(currentNode->child_count == 2);
Dereference deref;
deref.nodePtr = currentNode;
deref.index = createExpression(AST_get_node(currentNode,0));
//index has to be made
if(deref.index == NULL) {
return SEMANTIC_ERROR;
}
Type * indexType = deref.index->result;
//indexType can only be a composite or a primitive
if(indexType->kind != TypeKindComposite && indexType->kind != TypeKindPrimitive) {
//TODO free deref index
return SEMANTIC_ERROR;
}
//indexType can only be int
if(indexType->kind == TypeKindPrimitive) {
if (indexType->impl.primitive != Int) {
//TODO free deref index
return SEMANTIC_ERROR;
}
}
if(indexType->kind == TypeKindComposite) {
if (indexType->impl.composite.primitive != Int) {
//TODO free deref index
return SEMANTIC_ERROR;
}
}
deref.variable = createExpression(AST_get_node(currentNode,1));
//variable has to be made
if(deref.index == NULL) {
//TODO free deref index
return SEMANTIC_ERROR;
}
//variable can only be a reference
if(deref.variable->result->kind != TypeKindReference) {
//TODO free deref index and variable
return SEMANTIC_ERROR;
}
ParentExpression->impl.dereference = deref;
ParentExpression->result = deref.variable->result->impl.reference;
return SEMANTIC_OK;
}
int createAddressOf(Expression* ParentExpression, AST_NODE_PTR currentNode) {
assert(currentNode != NULL);
assert(currentNode->child_count == 1);
AddressOf address_of;
address_of.node_ptr = currentNode;
address_of.variable = createExpression(AST_get_node(currentNode,0));
if (address_of.variable == NULL) {
//TODO free
return SEMANTIC_ERROR;
}
Type *resultType = malloc(sizeof(Type));
resultType->nodePtr = currentNode;
resultType->kind = TypeKindReference;
resultType->impl.reference = address_of.variable->result;
ParentExpression->impl.addressOf = address_of;
ParentExpression->result = resultType;
return SEMANTIC_OK;
}
Expression *createExpression(AST_NODE_PTR currentNode){
DEBUG("create Expression");
Expression *expression = mem_alloc(MemoryNamespaceSet,sizeof(Expression));
expression->nodePtr = currentNode;
switch (currentNode->kind) {
case AST_Int:
case AST_Float:
expression->kind = ExpressionKindConstant;
expression->impl.constant = createTypeValue(currentNode);
expression->result = expression->impl.constant.type;
break;
case AST_String:
expression->kind = ExpressionKindConstant;
expression->impl.constant = createString(currentNode);
expression->result = expression->impl.constant.type;
break;
case AST_Ident:
DEBUG("find var");
expression->kind = ExpressionKindVariable;
int status = getVariableFromScope(currentNode->value, &(expression->impl.variable));
if (status == SEMANTIC_ERROR) {
DEBUG("Identifier is not in current scope");
print_diagnostic(current_file, &currentNode->location, Error, "Variable not found");
return NULL;
}
switch (expression->impl.variable->kind) {
case VariableKindDeclaration:
expression->result = expression->impl.variable->impl.declaration.type;
DEBUG("%d", expression->impl.variable->impl.declaration.type->kind);
break;
case VariableKindDefinition:
expression->result = expression->impl.variable->impl.definiton.declaration.type;
break;
default:
PANIC("current Variable should not be an BoxMember");
break;
}
break;
case AST_Add:
case AST_Sub:
case AST_Mul:
case AST_Div:
expression->kind = ExpressionKindOperation;
if (createArithOperation(expression, currentNode, 2)) {
return NULL;
}
break;
case AST_Negate:
expression->kind = ExpressionKindOperation;
if (createArithOperation(expression, currentNode, 1)) {
return NULL;
}
break;
case AST_Eq:
case AST_Less:
case AST_Greater:
expression->kind = ExpressionKindOperation;
if (createRelationalOperation(expression, currentNode)) {
return NULL;
}
break;
case AST_BoolAnd:
case AST_BoolOr:
case AST_BoolXor:
expression->kind = ExpressionKindOperation;
if (createBoolOperation(expression, currentNode)) {
return NULL;
}
break;
case AST_BoolNot:
expression->kind = ExpressionKindOperation;
if (createBoolNotOperation(expression, currentNode)) {
return NULL;
}
break;
case AST_BitAnd:
case AST_BitOr:
case AST_BitXor:
expression->kind = ExpressionKindOperation;
if (createBitOperation(expression, currentNode)) {
return NULL;
}
break;
case AST_BitNot:
expression->kind = ExpressionKindOperation;
if (createBitNotOperation(expression, currentNode)) {
return NULL;
}
break;
case AST_IdentList:
case AST_List:
expression->kind = ExpressionKindVariable;
if (createBoxAccess(expression, currentNode)) {
return NULL;
}
break;
case AST_Typecast:
expression->kind = ExpressionKindTypeCast;
if (createTypeCast(expression, currentNode)) {
return NULL;
}
break;
case AST_Transmute:
expression->kind = ExpressionKindTransmute;
if (createTransmute(expression, currentNode)) {
return NULL;
}
break;
case AST_Dereference:
expression->kind = ExpressionKindDereference;
if(createDeref(expression, currentNode)) {
//TODO free expression
return NULL;
}
break;
case AST_AddressOf:
expression->kind = ExpressionKindAddressOf;
if(createAddressOf(expression,currentNode)) {
//TODO free space
return NULL;
}
break;
default:
PANIC("Node is not an expression but from kind: %i", currentNode->kind);
break;
}
DEBUG("expression result typekind: %d",expression->result->kind);
DEBUG("successfully created Expression");
return expression;
}
bool compareTypes(Type * leftType, Type * rightType) {
if (leftType->kind != rightType->kind) {
return FALSE;
}
if (leftType->kind == TypeKindPrimitive) {
if(leftType->impl.primitive != rightType->impl.primitive) {
return FALSE;
}
return TRUE;
}
if ( leftType->kind == TypeKindComposite) {
CompositeType leftComposite = leftType->impl.composite;
CompositeType rightComposite = leftType->impl.composite;
if(leftComposite.primitive != rightComposite.primitive) {
return FALSE;
}
if(leftComposite.sign != rightComposite.sign) {
return FALSE;
}
if(leftComposite.scale != rightComposite.scale) {
return FALSE;
}
return TRUE;
}
if(leftType->kind == TypeKindBox) {
if(leftType->impl.box != rightType->impl.box) {
return FALSE;
}
return TRUE;
}
if(leftType->kind == TypeKindReference) {
bool result = compareTypes(leftType->impl.reference, rightType->impl.reference);
return result;
}
return FALSE;
}
int createAssign(Statement* ParentStatement, AST_NODE_PTR currentNode){
DEBUG("create Assign");
Assignment assign;
assign.nodePtr = currentNode;
const char* varName = currentNode->children[0]->value;
int status = getVariableFromScope(varName, &assign.variable);
if(status){
return SEMANTIC_ERROR;
}
assign.value = createExpression(currentNode->children[1]);
if(assign.value == NULL){
return SEMANTIC_ERROR;
}
ParentStatement->impl.assignment = assign;
return SEMANTIC_OK;
}
int createStatement(Block * block, AST_NODE_PTR currentNode);
int fillBlock(Block * block,AST_NODE_PTR currentNode){
DEBUG("start filling Block");
block->nodePtr = currentNode;
block->statemnts = g_array_new(FALSE,FALSE,sizeof(Statement*));
GHashTable * lowerScope = g_hash_table_new(g_str_hash,g_str_equal);
g_array_append_val(Scope, lowerScope);
for(size_t i = 0; i < currentNode->child_count; i++){
int signal = createStatement(block, AST_get_node(currentNode, i));
if(signal){
return SEMANTIC_ERROR;
}
}
g_hash_table_destroy(lowerScope);
g_array_remove_index(Scope, Scope->len-1);
DEBUG("created Block successfully");
return SEMANTIC_OK;
}
int createWhile(Statement * ParentStatement, AST_NODE_PTR currentNode){
assert(ParentStatement != NULL);
assert(currentNode != NULL);
assert(currentNode->kind == AST_While);
While whileStruct;
whileStruct.nodePtr = currentNode;
whileStruct.conditon = createExpression(currentNode->children[0]);
if(NULL == whileStruct.conditon){
return SEMANTIC_ERROR;
}
AST_NODE_PTR statementList = currentNode->children[1];
int signal = fillBlock(&whileStruct.block,statementList);
if(signal){
return SEMANTIC_ERROR;
}
ParentStatement->impl.whileLoop = whileStruct;
return SEMANTIC_OK;
}
int createIf(Branch* Parentbranch, AST_NODE_PTR currentNode){
If ifbranch;
ifbranch.nodePtr = currentNode;
Expression* expression = createExpression(currentNode->children[0]);
if (NULL == expression) {
return SEMANTIC_ERROR;
}
ifbranch.conditon = expression;
int status = fillBlock(&ifbranch.block, currentNode->children[1]);
if(status){
return SEMANTIC_ERROR;
}
Parentbranch->ifBranch = ifbranch;
return SEMANTIC_OK;
}
int createElse(Branch* Parentbranch, AST_NODE_PTR currentNode){
Else elseBranch;
elseBranch.nodePtr = currentNode;
int status = fillBlock(&elseBranch.block, currentNode->children[0]);
if(status){
return SEMANTIC_ERROR;
}
Parentbranch->elseBranch = elseBranch;
return SEMANTIC_OK;
}
int createElseIf(Branch* Parentbranch, AST_NODE_PTR currentNode){
ElseIf elseIfBranch;
elseIfBranch.nodePtr = currentNode;
Expression* expression = createExpression(currentNode->children[0]);
if (NULL == expression) {
return SEMANTIC_ERROR;
}
elseIfBranch.conditon = expression;
int status = fillBlock(&elseIfBranch.block, currentNode->children[1]);
if(status){
return SEMANTIC_ERROR;
}
g_array_append_val(Parentbranch->elseIfBranches,elseIfBranch);
return SEMANTIC_OK;
}
int createBranch(Statement* ParentStatement,AST_NODE_PTR currentNode){
Branch Branch;
Branch.nodePtr = currentNode;
for (size_t i = 0; i < currentNode->child_count; i++ ){
switch (currentNode->children[i]->kind){
case AST_If:
if(createIf(&Branch, currentNode->children[i])){
return SEMANTIC_ERROR;
}
break;
case AST_IfElse:
if(createElseIf(&Branch, currentNode)){
return SEMANTIC_ERROR;
}
break;
case AST_Else:
if(createElse(&Branch, currentNode->children[i])){
return SEMANTIC_ERROR;
}
break;
default:
PANIC("current node is not part of a Branch");
break;
}
}
ParentStatement->impl.branch = Branch;
return SEMANTIC_OK;
}
int createStatement(Block * Parentblock , AST_NODE_PTR currentNode){
DEBUG("create Statement");
switch(currentNode->kind){
case AST_Decl:{
GArray *variable= g_array_new(FALSE, FALSE, sizeof(Variable*));
int status = createDecl(currentNode, &variable);
if(status){
return SEMANTIC_ERROR;
}
for(size_t i = 0; i < variable->len ; i++){
Statement * statement = mem_alloc(MemoryNamespaceSet,sizeof(Statement));
statement->nodePtr = currentNode;
statement->kind = StatementKindDeclaration;
statement->impl.variable = g_array_index(variable,Variable *,i);
g_array_append_val(Parentblock->statemnts,statement);
}
}
break;
case AST_Def:{
GArray *variable= g_array_new(FALSE, FALSE, sizeof(Variable*));
int status = createDef(currentNode, &variable);
if(status){
return SEMANTIC_ERROR;
}
for(size_t i = 0; i < variable->len ; i++){
Statement * statement = mem_alloc(MemoryNamespaceSet,sizeof(Statement));
statement->nodePtr = currentNode;
statement->kind = StatementKindDefinition;
statement->impl.variable = g_array_index(variable,Variable *,i);
g_array_append_val(Parentblock->statemnts,statement);
}
}
break;
case AST_While:{
Statement * statement = mem_alloc(MemoryNamespaceSet,sizeof(Statement));
statement->nodePtr = currentNode;
statement->kind = StatementKindWhile;
if(createWhile(statement, currentNode)){
return SEMANTIC_ERROR;
}
g_array_append_val(Parentblock->statemnts,statement);
}
break;
case AST_Stmt:{
Statement * statement = mem_alloc(MemoryNamespaceSet,sizeof(Statement));
statement->nodePtr = currentNode;
statement->kind = StatementKindBranch;
if(createBranch(statement, currentNode)){
return SEMANTIC_ERROR;
}
g_array_append_val(Parentblock->statemnts,statement);
}
break;
case AST_Assign:{
Statement * statement = mem_alloc(MemoryNamespaceSet,sizeof(Statement));
statement->nodePtr = currentNode;
statement->kind = StatementKindAssignment;
if(createAssign(statement, currentNode)){
return SEMANTIC_ERROR;
}
g_array_append_val(Parentblock->statemnts,statement);
}
break;
case AST_Call:
//TODO both funcall and boxfuncall
default:
break;
}
return SEMANTIC_OK;
}
int createParam(GArray * Paramlist ,AST_NODE_PTR currentNode){
assert(currentNode->kind == AST_Parameter);
DEBUG("start param");
DEBUG("current node child count: %i",currentNode->child_count);
AST_NODE_PTR paramdecl = currentNode->children[1];
AST_NODE_PTR ioQualifierList = currentNode->children[0];
ParameterDeclaration decl;
decl.nodePtr = paramdecl;
DEBUG("iolistnode child count: %i", ioQualifierList->child_count );
if(ioQualifierList->child_count == 2){
decl.qualifier = InOut;
}else if(ioQualifierList->child_count == 1){
if(strcmp(ioQualifierList->children[0]->value , "in") == 0){
decl.qualifier = In;
}else if(strcmp(ioQualifierList->children[0]->value , "out") == 0){
decl.qualifier = Out;
}else{
PANIC("IO_Qualifier is not in or out");
}
}else{
PANIC("IO_Qualifier has not the right amount of children");
}
int signal = set_get_type_impl(paramdecl->children[0], &(decl.type));
if(signal){
return SEMANTIC_ERROR;
}
Parameter param;
param.nodePtr = currentNode;
param.kind = ParameterDeclarationKind;
param.impl.declaration = decl;
param.name = paramdecl->children[1]->value;
DEBUG("param name: %s", param.name);
g_array_append_val(Paramlist, param);
DEBUG("create var for param");
Variable * paramvar = mem_alloc(MemoryNamespaceSet,sizeof(Variable));
paramvar->kind = VariableKindDeclaration;
paramvar->name = param.name;
paramvar->nodePtr = currentNode;
paramvar->impl.declaration.nodePtr = currentNode;
paramvar->impl.declaration.qualifier = Local;
paramvar->impl.declaration.type = param.impl.declaration.type;
if (g_hash_table_contains(functionParameter, param.name)){
return SEMANTIC_ERROR;
}
g_hash_table_insert(functionParameter, (gpointer)param.name, paramvar);
DEBUG("created param successfully");
return SEMANTIC_OK;
}
int createFunDef(Function * Parentfunction ,AST_NODE_PTR currentNode){
DEBUG("start fundef");
AST_NODE_PTR nameNode = currentNode->children[0];
AST_NODE_PTR paramlistlist = currentNode->children[1];
AST_NODE_PTR statementlist = currentNode->children[2];
FunctionDefinition fundef;
fundef.nodePtr = currentNode;
fundef.name = nameNode->value;
fundef.body = mem_alloc(MemoryNamespaceSet,sizeof(Block));
fundef.parameter = g_array_new(FALSE, FALSE, sizeof(Parameter));
DEBUG("paramlistlist child count: %i", paramlistlist->child_count);
for(size_t i = 0; i < paramlistlist->child_count; i++){
//all parameterlists
AST_NODE_PTR paramlist = paramlistlist->children[i];
DEBUG("paramlist child count: %i", paramlist->child_count);
for (size_t j = 0; j < paramlist->child_count; j++){
DEBUG("param child count: %i", AST_get_node(paramlist, j)->child_count);
int signal = createParam(fundef.parameter ,AST_get_node(paramlist, j));
//all params per list
if (signal){
return SEMANTIC_ERROR;
}
}
DEBUG("End of Paramlist");
}
int signal = fillBlock(fundef.body, statementlist);
if(signal){
return SEMANTIC_ERROR;
}
Parentfunction->nodePtr = currentNode;
Parentfunction->kind = FunctionDefinitionKind;
Parentfunction->impl.definition = fundef;
Parentfunction->name = fundef.name;
return SEMANTIC_OK;
}
int createFunDecl(Function * Parentfunction ,AST_NODE_PTR currentNode){
DEBUG("start fundecl");
AST_NODE_PTR nameNode = currentNode->children[0];
AST_NODE_PTR paramlistlist = currentNode->children[1];
FunctionDeclaration fundecl;
fundecl.nodePtr = currentNode;
fundecl.name = nameNode->value;
fundecl.parameter = mem_alloc(MemoryNamespaceSet,sizeof(GArray));
for(size_t i = 0; i < paramlistlist->child_count; i++){
//all parameterlists
AST_NODE_PTR paramlist = paramlistlist->children[i];
for (size_t j = 0; j < paramlistlist->child_count; j++){
int signal = createParam(fundecl.parameter ,paramlist->children[i]);
//all params per list
if (signal){
return SEMANTIC_ERROR;
}
}
}
Parentfunction->nodePtr = currentNode;
Parentfunction->kind = FunctionDefinitionKind;
Parentfunction->impl.declaration = fundecl;
Parentfunction->name = fundecl.name;
return SEMANTIC_OK;
}
//TODO check if a function is present and if a declaration is present and identical.
int createFunction(GHashTable* functions, AST_NODE_PTR currentNode){
assert(currentNode->kind == AST_Fun);
Function * fun = mem_alloc(MemoryNamespaceSet,sizeof(Function));
functionParameter = g_hash_table_new(g_str_hash,g_str_equal);
if(currentNode->child_count == 2){
int signal = createFunDecl(fun, currentNode);
if (signal){
return SEMANTIC_ERROR;
}
}else if(currentNode->child_count == 3){
int signal = createFunDef(fun, currentNode);
if (signal){
return SEMANTIC_ERROR;
}
}else {
PANIC("function should have 2 or 3 children");
}
if(g_hash_table_contains(functions,fun->name)){
// TODO: delete fun
return SEMANTIC_ERROR;
}
g_hash_table_insert(functions,(gpointer)fun->name, fun);
g_hash_table_destroy(functionParameter);
return SEMANTIC_OK;
}
int createDeclMember(BoxType * ParentBox, AST_NODE_PTR currentNode){
Type * declType = mem_alloc(MemoryNamespaceSet,sizeof(Type));
int status = set_get_type_impl(currentNode->children[0], &declType);
if(status){
return SEMANTIC_ERROR;
}
AST_NODE_PTR nameList = currentNode->children[1];
for(size_t i = 0; i < nameList->child_count; i++){
BoxMember * decl = mem_alloc(MemoryNamespaceSet,sizeof(BoxMember));
decl->name = nameList->children[i]->value;
decl->nodePtr = currentNode;
decl->box = ParentBox;
decl->initalizer = NULL;
decl->type = declType;
if(g_hash_table_contains(ParentBox->member, (gpointer)decl->name)){
return SEMANTIC_ERROR;
}
g_hash_table_insert(ParentBox->member,(gpointer)decl->name,decl);
}
return SEMANTIC_OK;
}
int createDefMember(BoxType *ParentBox, AST_NODE_PTR currentNode){
AST_NODE_PTR declNode = currentNode->children[0];
AST_NODE_PTR expressionNode = currentNode->children[1];
AST_NODE_PTR nameList = declNode->children[1];
Type * declType = mem_alloc(MemoryNamespaceSet,sizeof(Type));
int status = set_get_type_impl(currentNode->children[0], &declType);
if(status){
return SEMANTIC_ERROR;
}
Expression * init = createExpression(expressionNode);;
if (init == NULL){
return SEMANTIC_ERROR;
}
for (size_t i = 0; i < nameList->child_count; i++){
BoxMember *def = mem_alloc(MemoryNamespaceSet,sizeof(BoxMember));
def->box = ParentBox;
def->type = declType;
def->initalizer = init;
def->name = nameList->children[i]->value;
def->nodePtr = currentNode;
if(g_hash_table_contains(ParentBox->member, (gpointer)def->name)){
return SEMANTIC_ERROR;
}
g_hash_table_insert(ParentBox->member,(gpointer)def->name,def);
}
return SEMANTIC_OK;
}
int createBox(GHashTable *boxes, AST_NODE_PTR currentNode){
BoxType * box = mem_alloc(MemoryNamespaceSet,sizeof(BoxType));
box->nodePtr = currentNode;
const char * boxName = currentNode->children[0]->value;
AST_NODE_PTR boxMemberList = currentNode->children[1];
for (size_t i = 0; boxMemberList->child_count; i++){
switch (boxMemberList->children[i]->kind) {
case AST_Decl:
if(createDeclMember(box, boxMemberList->children[i]->children[i])){
return SEMANTIC_ERROR;
}
break;
case AST_Def:
if(createDeclMember(box, boxMemberList->children[i]->children[i])){
return SEMANTIC_ERROR;
}
break;
case AST_Fun:
//TODO FUNCTION Wait for createFunction()
default:
break;
}
}
if(g_hash_table_contains(boxes, (gpointer)boxName)){
return SEMANTIC_ERROR;
}
g_hash_table_insert(boxes, (gpointer)boxName, box);
return SEMANTIC_OK;
//
//box
// name
// list
// decl
// def // change BoxMember to have an
// fun //create static function
// a.b(dsadsadas)
//type box: boxy {
//
//long short int: a
//
//short short float: floaty = 0.54
//
//fun main (){
//int: a = 5
//}
}
int createTypeDef(GHashTable *types, AST_NODE_PTR currentNode){
DEBUG("create Type define");
AST_NODE_PTR typeNode = currentNode->children[0];
AST_NODE_PTR nameNode = currentNode->children[1];
Type * type = mem_alloc(MemoryNamespaceSet,sizeof(Type));
int status = set_get_type_impl(typeNode, &type);
if(status){
return SEMANTIC_ERROR;
}
Typedefine *def = mem_alloc(MemoryNamespaceSet,sizeof(Typedefine));
def->name = nameNode->value;
def->nodePtr = currentNode;
def->type = type;
if(g_hash_table_contains(types, (gpointer)def->name)){
return SEMANTIC_ERROR;
}
g_hash_table_insert(types, (gpointer)def->name, def);
if(g_hash_table_contains(declaredComposites, (gpointer)def->name)){
return SEMANTIC_ERROR;
}
g_hash_table_insert(declaredComposites, (gpointer)def->name, def);
return SEMANTIC_OK;
}
Module *create_set(AST_NODE_PTR currentNode){
DEBUG("create root Module");
//create tables for types
declaredComposites = g_hash_table_new(g_str_hash,g_str_equal);
declaredBoxes = g_hash_table_new(g_str_hash,g_str_equal);
//create scope
Scope = g_array_new(FALSE, FALSE, sizeof(GHashTable*));
//building current scope for module
GHashTable *globalscope = g_hash_table_new(g_str_hash, g_str_equal);
globalscope = g_hash_table_new(g_str_hash,g_str_equal);
g_array_append_val(Scope, globalscope);
Module *rootModule = mem_alloc(MemoryNamespaceSet,sizeof(Module));
GHashTable *boxes = g_hash_table_new(g_str_hash,g_str_equal);
GHashTable *types = g_hash_table_new(g_str_hash,g_str_equal);
GHashTable *functions = g_hash_table_new(g_str_hash,g_str_equal);
GHashTable *variables = g_hash_table_new(g_str_hash,g_str_equal);
GArray *imports = g_array_new(FALSE, FALSE, sizeof(const char*));
rootModule->boxes = boxes;
rootModule->types = types;
rootModule->functions = functions;
rootModule->variables = variables;
rootModule->imports = imports;
DEBUG("created Module struct");
for (size_t i = 0; i < currentNode->child_count; i++){
DEBUG("created Child with type: %i", currentNode->children[i]->kind);
switch (currentNode->children[i]->kind) {
case AST_Decl: {
GArray *vars;
int status = createDecl(currentNode->children[i], &vars);
if (status) {
return NULL;
}
if (fillTablesWithVars(variables, vars) == SEMANTIC_ERROR) {
// TODO: this diagnostic will highlight entire declaration of
// of variables even if just one of the declared variables
// is duplicate. Consider moving this diagnostic to
// `fillTablesWithVars` for more precise messaging.
print_diagnostic(current_file, &currentNode->children[i]->location, Error,
"Variable already declared");
INFO("var already exists");
break;
}
DEBUG("filled successfull the module and scope with vars");
break;
}
case AST_Def: {
GArray *vars;
int status = createDef(currentNode->children[i], &vars);
if (status) {
return NULL;
}
// TODO: free vars
DEBUG("created Definition successfully");
break;
}
case AST_Box: {
int status = createBox(boxes, currentNode->children[i]);
if (status) {
return NULL;
}
DEBUG("created Box successfully");
break;
}
case AST_Fun:{
DEBUG("start function");
int status = createFunction(functions,currentNode->children[i]);
if (status){
// TODO: cleanup global memory
return NULL;
}
DEBUG("created function successfully");
break;
}
case AST_Typedef:{
int status = createTypeDef(types, currentNode->children[i]);
if (status){
// TODO: cleanup global memory
return NULL;
}
DEBUG("created Typedef successfully");
break;
}
case AST_Import:
DEBUG("create Import");
g_array_append_val(imports, currentNode->children[i]->value);
break;
default:
INFO("Provided source file could not be parsed because of semantic error.");
break;
}
}
DEBUG("created set successfully");
return rootModule;
}