#include #include #include #include #include #include #include #include #include #include #include #include #include #include extern ModuleFile *current_file; static GHashTable *declaredComposites = NULL;//pointer to composites with names static GHashTable *declaredBoxes = NULL;//pointer to type static GHashTable *functionParameter = NULL; static GHashTable *definedFunctions = NULL; static GHashTable *declaredFunctions = NULL; static GArray *Scope = NULL;//list of hashtables. last Hashtable is current depth of program. hashtable key: ident, value: Variable* to var bool compareTypes(Type * leftType, Type * rightType); const Type ShortShortUnsingedIntType = { .kind = TypeKindComposite, .impl = { .composite = { .sign = Unsigned, .scale = 0.25, .primitive = Int } }, .nodePtr = NULL, }; const Type StringLiteralType = { .kind = TypeKindReference, .impl = { .reference = (ReferenceType) &ShortShortUnsingedIntType, }, .nodePtr = NULL, }; /** * @brief Convert a string into a sign typ * @return 0 on success, 1 otherwise */ int sign_from_string(const char *string, Sign *sign) { assert(string != NULL); assert(sign != NULL); if (strcmp(string, "unsigned") == 0) { *sign = Unsigned; return SEMANTIC_OK; } if (strcmp(string, "signed") == 0) { *sign = Signed; return SEMANTIC_OK; } return SEMANTIC_ERROR; } /** * @brief Convert a string into a primitive type * @return 0 on success, 1 otherwise */ int primitive_from_string(const char *string, PrimitiveType *primitive) { assert(string != NULL); assert(primitive != NULL); DEBUG("find primitive in string"); if (strcmp(string, "int") == 0) { *primitive = Int; return SEMANTIC_OK; } if (strcmp(string, "float") == 0) { *primitive = Float; return SEMANTIC_OK; } return SEMANTIC_ERROR; } int scale_factor_from(const char *string, double *factor) { assert(string != NULL); assert(factor != NULL); if (strcmp(string, "half") == 0 || strcmp(string, "short") == 0) { *factor = 0.5; return SEMANTIC_OK; } if (strcmp(string, "double") == 0 || strcmp(string, "long") == 0) { *factor = 2.0; return SEMANTIC_OK; } return SEMANTIC_ERROR; } int check_scale_factor(AST_NODE_PTR node, Scale scale) { assert(node != NULL); if (8 < scale) { print_diagnostic(current_file, &node->location, Error, "Composite scale overflow"); return SEMANTIC_ERROR; } if (0.25 > scale) { print_diagnostic(current_file, &node->location, Error, "Composite scale underflow"); return SEMANTIC_ERROR; } return SEMANTIC_OK; } int merge_scale_list(AST_NODE_PTR scale_list, Scale *scale) { assert(scale_list != NULL); assert(scale != NULL); for (size_t i = 0; i < scale_list->child_count; i++) { double scale_in_list = 1.0; int scale_invalid = scale_factor_from(AST_get_node(scale_list, i)->value, &scale_in_list); if (scale_invalid == SEMANTIC_ERROR) { return SEMANTIC_ERROR; } *scale *= scale_in_list; } return SEMANTIC_OK; } /** * @brief Get an already declared type from its name */ int get_type_decl(const char *name, Type **type) { assert(name != NULL); assert(type != NULL); if (g_hash_table_contains(declaredComposites, name) == TRUE) { *type = (Type *) g_hash_table_lookup(declaredComposites, name); return SEMANTIC_OK; } return SEMANTIC_ERROR; } int impl_composite_type(AST_NODE_PTR ast_type, CompositeType *composite) { assert(ast_type != NULL); assert(composite != NULL); DEBUG("Type is a Composite"); int status = SEMANTIC_OK; int scaleNodeOffset = 0; composite->sign = Signed; // check if we have a sign if (AST_Sign == ast_type->children[0]->kind) { status = sign_from_string(ast_type->children[0]->value, &composite->sign); if (status == SEMANTIC_ERROR) { ERROR("invalid sign: %s", ast_type->children[0]->value); return SEMANTIC_ERROR; } scaleNodeOffset++; } composite->scale = 1.0; // check if we have a list of scale factors if (ast_type->children[scaleNodeOffset]->kind == AST_List) { status = merge_scale_list(ast_type->children[scaleNodeOffset], &composite->scale); if (status == SEMANTIC_ERROR) { return SEMANTIC_ERROR; } } AST_NODE_PTR typeKind = ast_type->children[ast_type->child_count - 1]; status = primitive_from_string(typeKind->value, &composite->primitive); // type kind is not primitve, must be a predefined composite if (status == SEMANTIC_ERROR) { // not a primitive try to resolve the type by name (must be a composite) Type *nested_type = NULL; status = get_type_decl(typeKind->value, &nested_type); if (status == SEMANTIC_ERROR) { print_diagnostic(current_file, &typeKind->location, Error, "Unknown composite type in declaration"); return SEMANTIC_ERROR; } if (nested_type->kind == TypeKindComposite) { // valid composite type composite->primitive = nested_type->impl.composite.primitive; // no sign was set, use sign of type if (scaleNodeOffset == 0) { composite->sign = nested_type->impl.composite.sign; } composite->scale = composite->scale * nested_type->impl.composite.scale; if(composite->scale > 8 || composite->scale < 0.25) { return SEMANTIC_ERROR; } } else { print_diagnostic(current_file, &typeKind->location, Error, "Type must be either composite or primitive"); return SEMANTIC_ERROR; } } return check_scale_factor(ast_type, composite->scale); } /** * @brief Converts the given AST node to a gemstone type implementation. * @param currentNode AST node of type kind type * @param type pointer output for the type * @return the gemstone type implementation */ int get_type_impl(AST_NODE_PTR currentNode, Type **type) { assert(currentNode != NULL); assert(currentNode->kind == AST_Type); assert(currentNode->child_count > 0); DEBUG("start Type"); int status; const char *typekind = currentNode->children[currentNode->child_count - 1]->value; //find type in composites if (g_hash_table_contains(declaredComposites, typekind) == TRUE) { *type = g_hash_table_lookup(declaredComposites, typekind); return SEMANTIC_OK; } if (g_hash_table_contains(declaredBoxes, typekind) == TRUE) { *type = g_hash_table_lookup(declaredBoxes, typekind); if(currentNode->child_count > 1) { return SEMANTIC_ERROR; } return SEMANTIC_OK; } // type is not yet declared, make a new one Type *new_type = mem_alloc(MemoryNamespaceSet, sizeof(Type)); new_type->nodePtr = currentNode; // only one child means either composite or primitive // try to implement primitive first // if not successfull continue building a composite if (currentNode->child_count == 1) { // type is a primitive new_type->kind = TypeKindPrimitive; status = primitive_from_string(typekind, &new_type->impl.primitive); // if err continue at composite construction if (status == SEMANTIC_OK) { *type = new_type; return SEMANTIC_OK; } return SEMANTIC_ERROR; } new_type->kind = TypeKindComposite; new_type->impl.composite.nodePtr = currentNode; status = impl_composite_type(currentNode, &new_type->impl.composite); *type = new_type; return status; } StorageQualifier Qualifier_from_string(const char *str) { assert(str != NULL); if (strcmp(str, "local") == 0) return Local; if (strcmp(str, "static") == 0) return Static; if (strcmp(str, "global") == 0) return Global; PANIC("Provided string is not a storagequalifier: %s", str); } int addVarToScope(Variable *variable); int createRef(AST_NODE_PTR currentNode, Type** reftype) { assert(currentNode != NULL); assert(currentNode->child_count == 1); assert(AST_get_node(currentNode,0)->kind == AST_Type); Type * type = malloc(sizeof(Type)); Type * referenceType = malloc(sizeof(Type)); referenceType->kind = TypeKindReference; referenceType->nodePtr = currentNode; int signal = get_type_impl(currentNode->children[0],&type); if(signal) { return SEMANTIC_ERROR; } referenceType->impl.reference = type; *reftype = referenceType; return SEMANTIC_OK; } int createDecl(AST_NODE_PTR currentNode, GArray **variables) { DEBUG("create declaration"); AST_NODE_PTR ident_list = currentNode->children[currentNode->child_count - 1]; *variables = mem_new_g_array(MemoryNamespaceSet, sizeof(Variable *)); VariableDeclaration decl; decl.nodePtr = currentNode; decl.qualifier = Static; int status = SEMANTIC_OK; DEBUG("Child Count: %i", currentNode->child_count); for (size_t i = 0; i < currentNode->child_count; i++) { switch (currentNode->children[i]->kind) { case AST_Storage: DEBUG("fill Qualifier"); decl.qualifier = Qualifier_from_string(AST_get_node(currentNode,i)->value); break; case AST_Type: DEBUG("fill Type"); status = get_type_impl(AST_get_node(currentNode,i), &decl.type); break; case AST_IdentList: break; case AST_Reference: status = createRef(AST_get_node(currentNode,i), &decl.type); break; default: PANIC("invalid node type: %ld", currentNode->children[i]->kind); break; } } for (size_t i = 0; i < ident_list->child_count; i++) { Variable *variable = mem_alloc(MemoryNamespaceSet, sizeof(Variable)); variable->kind = VariableKindDeclaration; variable->nodePtr = currentNode; variable->name = ident_list->children[i]->value; variable->impl.declaration = decl; g_array_append_val(*variables, variable); int signal = addVarToScope(variable); if (signal) { return SEMANTIC_ERROR; } } return status; } Expression *createExpression(AST_NODE_PTR currentNode); int createDef(AST_NODE_PTR currentNode, GArray **variables) { assert(variables != NULL); assert(currentNode != NULL); assert(currentNode->kind == AST_Def); DEBUG("create definition"); AST_NODE_PTR declaration = currentNode->children[0]; AST_NODE_PTR expression = currentNode->children[1]; AST_NODE_PTR ident_list = declaration->children[currentNode->child_count - 1]; *variables = mem_new_g_array(MemoryNamespaceSet, sizeof(Variable *)); VariableDeclaration decl; VariableDefiniton def; def.nodePtr = currentNode; decl.qualifier = Static; decl.nodePtr = AST_get_node(currentNode, 0); int status = SEMANTIC_OK; DEBUG("Child Count: %i", declaration->child_count); for (size_t i = 0; i < declaration->child_count; i++) { switch (declaration->children[i]->kind) { case AST_Storage: DEBUG("fill Qualifier"); decl.qualifier = Qualifier_from_string(declaration->children[i]->value); break; case AST_Type: DEBUG("fill Type"); status = get_type_impl(declaration->children[i], &decl.type); break; case AST_IdentList: break; default: PANIC("invalid node type: %ld", declaration->children[i]->kind); break; } } def.declaration = decl; Expression *name = createExpression(expression); if (name == NULL) { status = SEMANTIC_OK; } def.initializer = name; for (size_t i = 0; i < ident_list->child_count; i++) { Variable *variable = mem_alloc(MemoryNamespaceSet, sizeof(Variable)); variable->kind = VariableKindDefinition; variable->nodePtr = currentNode; variable->name = ident_list->children[i]->value; variable->impl.definiton = def; g_array_append_val(*variables, variable); if (addVarToScope(variable) == SEMANTIC_ERROR) { return SEMANTIC_ERROR; } } return status; } int getVariableFromScope(const char *name, Variable **variable) { assert(name != NULL); assert(variable != NULL); assert(Scope != NULL); DEBUG("getting var from scope"); int found = 0; // loop through all variable scope and find a variable if(functionParameter != NULL) { if(g_hash_table_contains(functionParameter, name)) { *variable = g_hash_table_lookup(functionParameter, name); found += 1; } } for(size_t i = 0; i < Scope->len; i++) { GHashTable* variable_table = g_array_index(Scope,GHashTable* ,i ); if(g_hash_table_contains(variable_table, name)) { if(found == 0){ *variable = g_hash_table_lookup(variable_table, name); } found += 1; } } if (found == 1){ DEBUG("Var: %s",(*variable)->name); DEBUG("Var Typekind: %d", (*variable)->kind); DEBUG("Found var"); return SEMANTIC_OK; }else if (found > 1) { WARN("Variable %s is a parameter and a declared variable. Returning parameter", name); return SEMANTIC_OK; } DEBUG("nothing found"); return SEMANTIC_ERROR; } int addVarToScope(Variable * variable){ Variable* tmp = NULL; if(getVariableFromScope(variable->name, &tmp) == SEMANTIC_OK) { INFO("this var already exist: ", variable->name); return SEMANTIC_ERROR; } GHashTable * currentScope = g_array_index(Scope,GHashTable* ,Scope->len -1); g_hash_table_insert(currentScope, (gpointer) variable->name, variable); return SEMANTIC_OK; } int fillTablesWithVars(GHashTable *variableTable, const GArray* variables) { DEBUG("filling vars in scope and table"); for(size_t i = 0; i < variables->len; i++) { Variable* var = g_array_index(variables,Variable *,i); // this variable is discarded, only need status code if(g_hash_table_contains(variableTable, (gpointer)var->name)){ return SEMANTIC_ERROR; } g_hash_table_insert(variableTable, (gpointer) var->name, var); } return SEMANTIC_OK; } [[nodiscard("type must be freed")]] TypeValue createTypeValue(AST_NODE_PTR currentNode){ DEBUG("create TypeValue"); TypeValue value; Type *type = mem_alloc(MemoryNamespaceSet,sizeof(Type)); value.type = type; type->kind = TypeKindPrimitive; type->nodePtr = currentNode; switch (currentNode->kind) { case AST_Int: type->impl.primitive = Int; break; case AST_Float: type->impl.primitive = Float; break; default: PANIC("Node is not an expression but from kind: %i", currentNode->kind); break; } value.nodePtr = currentNode; value.value = currentNode->value; return value; } #define CLONE(x) mem_clone(MemoryNamespaceSet, (void*)&(x), sizeof(x)) TypeValue createString(AST_NODE_PTR currentNode) { DEBUG("create String"); TypeValue value; Type *type = CLONE(StringLiteralType); value.type = type; value.nodePtr = currentNode; value.value = currentNode->value; return value; } Type* createTypeFromOperands(Type* LeftOperandType, Type* RightOperandType, AST_NODE_PTR currentNode) { DEBUG("create type from operands"); Type *result = mem_alloc(MemoryNamespaceSet,sizeof(Type)); result->nodePtr = currentNode; DEBUG("LeftOperandType->kind: %i", LeftOperandType->kind); DEBUG("RightOperandType->kind: %i", RightOperandType->kind); if (LeftOperandType->kind == TypeKindComposite && RightOperandType->kind == TypeKindComposite) { result->kind = TypeKindComposite; CompositeType resultImpl; resultImpl.nodePtr = currentNode; resultImpl.sign = MAX(LeftOperandType->impl.composite.sign, RightOperandType->impl.composite.sign); resultImpl.scale = MAX(LeftOperandType->impl.composite.scale, RightOperandType->impl.composite.scale); resultImpl.primitive = MAX(LeftOperandType->impl.composite.primitive , RightOperandType->impl.composite.primitive); result->impl.composite = resultImpl; } else if (LeftOperandType->kind == TypeKindPrimitive && RightOperandType->kind == TypeKindPrimitive) { DEBUG("both operands are primitive"); result->kind = TypeKindPrimitive; result->impl.primitive = MAX(LeftOperandType->impl.primitive , RightOperandType->impl.primitive); } else if (LeftOperandType->kind == TypeKindPrimitive && RightOperandType->kind == TypeKindComposite) { result->kind = TypeKindComposite; result->impl.composite.sign = Signed; result->impl.composite.scale = MAX(1.0, RightOperandType->impl.composite.scale); result->impl.composite.primitive = MAX(Int, RightOperandType->impl.composite.primitive); result->impl.composite.nodePtr = currentNode; } else if (LeftOperandType->kind == TypeKindComposite && RightOperandType->kind == TypeKindPrimitive) { result->kind = TypeKindComposite; result->impl.composite.sign = Signed; result->impl.composite.scale = MAX(1.0, LeftOperandType->impl.composite.scale); result->impl.composite.primitive = MAX(Int, LeftOperandType->impl.composite.primitive); result->impl.composite.nodePtr = currentNode; } else { mem_free(result); return NULL; } DEBUG("Succsessfully created type"); return result; } int createTypeCastFromExpression(Expression * expression, Type * resultType, Expression ** result) { Expression * expr = mem_alloc(MemoryNamespaceSet, sizeof(Expression)); expr->result = resultType; expr->nodePtr = expression->nodePtr; expr->kind = ExpressionKindTypeCast; TypeCast typeCast; typeCast.nodePtr = expression->nodePtr; typeCast.targetType = resultType; typeCast.operand = expression; expr->impl.typecast = typeCast; if (expression->result->kind != TypeKindComposite && expression->result->kind != TypeKindPrimitive){ return SEMANTIC_ERROR; } *result = expr; return SEMANTIC_OK; } int createArithOperation(Expression* ParentExpression, AST_NODE_PTR currentNode, [[maybe_unused]] size_t expectedChildCount) { DEBUG("create arithmetic operation"); ParentExpression->impl.operation.kind = Arithmetic; ParentExpression->impl.operation.nodePtr = currentNode; ParentExpression->impl.operation.operands = g_array_new(FALSE, FALSE,sizeof(Expression*)); assert(expectedChildCount == currentNode->child_count); for (size_t i = 0; i < currentNode->child_count; i++) { Expression* expression = createExpression(currentNode->children[i]); if(NULL == expression) { return SEMANTIC_ERROR; } g_array_append_val(ParentExpression->impl.operation.operands, expression); } DEBUG("created all Expressions"); switch (currentNode->kind) { case AST_Add: ParentExpression->impl.operation.impl.arithmetic = Add; break; case AST_Sub: ParentExpression->impl.operation.impl.arithmetic = Sub; break; case AST_Mul: ParentExpression->impl.operation.impl.arithmetic = Mul; break; case AST_Div: ParentExpression->impl.operation.impl.arithmetic = Div; break; case AST_Negate: ParentExpression->impl.operation.impl.arithmetic = Negate; break; default: PANIC("Current node is not an arithmetic operater"); break; } if (ParentExpression->impl.operation.impl.arithmetic == Negate) { Type* result = g_array_index(ParentExpression->impl.operation.operands,Expression *,0)->result; result->nodePtr = currentNode; if (result->kind == TypeKindReference || result->kind == TypeKindBox) { print_diagnostic(current_file, ¤tNode->location, Error, "Invalid type for arithmetic operation"); return SEMANTIC_ERROR; } else if(result->kind == TypeKindComposite) { result->impl.composite.sign = Signed; } ParentExpression->result = result; } else { Type* LeftOperandType = g_array_index(ParentExpression->impl.operation.operands,Expression *,0)->result; Type* RightOperandType = g_array_index(ParentExpression->impl.operation.operands,Expression *,1)->result; ParentExpression->result = createTypeFromOperands(LeftOperandType, RightOperandType, currentNode); } if (ParentExpression->result == NULL) { return SEMANTIC_ERROR; } for (size_t i = 0 ; i < ParentExpression->impl.operation.operands->len; i++) { Expression * operand = g_array_index(ParentExpression->impl.operation.operands, Expression*, i); if(!compareTypes(operand->result, ParentExpression->result)) { Expression * result; int status = createTypeCastFromExpression(operand, ParentExpression->result, &result); if(status == SEMANTIC_ERROR) { return SEMANTIC_ERROR; } g_array_index(ParentExpression->impl.operation.operands, Expression*, i) = result; } } return SEMANTIC_OK; } int createRelationalOperation(Expression* ParentExpression, AST_NODE_PTR currentNode) { // fill kind and Nodeptr ParentExpression->impl.operation.kind = Relational; ParentExpression->impl.operation.nodePtr = currentNode; ParentExpression->impl.operation.operands = g_array_new(FALSE,FALSE,sizeof(Expression*)); // fill Operands for (size_t i = 0; i < currentNode->child_count; i++) { Expression* expression = createExpression(currentNode->children[i]); if(NULL == expression){ return SEMANTIC_ERROR; } g_array_append_val(ParentExpression->impl.operation.operands, expression); } // fill impl switch (currentNode->kind) { case AST_Eq: ParentExpression->impl.operation.impl.relational = Equal; break; case AST_Less: ParentExpression->impl.operation.impl.relational = Greater; break; case AST_Greater: ParentExpression->impl.operation.impl.relational= Less; break; default: PANIC("Current node is not an relational operater"); break; } Type* result = mem_alloc(MemoryNamespaceSet,sizeof(Type)); result->impl.primitive = Int; result->kind = TypeKindPrimitive; result->nodePtr = currentNode; ParentExpression->result = result; for (size_t i = 0 ; i < ParentExpression->impl.operation.operands->len; i++) { Expression * operand = g_array_index(ParentExpression->impl.operation.operands, Expression*, i); if(!compareTypes(operand->result, ParentExpression->result)) { Expression * expr; int status = createTypeCastFromExpression(operand, ParentExpression->result, &expr); if(status == SEMANTIC_ERROR) { return SEMANTIC_ERROR; } g_array_index(ParentExpression->impl.operation.operands, Expression*, i) = expr; } } return 0; } int createBoolOperation(Expression *ParentExpression, AST_NODE_PTR currentNode) { // fill kind and Nodeptr ParentExpression->impl.operation.kind = Boolean; ParentExpression->impl.operation.nodePtr = currentNode; // fill Operands for (size_t i = 0; i < currentNode->child_count; i++){ Expression* expression = createExpression(currentNode->children[i]); if (NULL == expression) { return SEMANTIC_ERROR; } g_array_append_val(ParentExpression->impl.operation.operands, expression); } switch (currentNode->kind) { case AST_BoolAnd: ParentExpression->impl.operation.impl.boolean = BooleanAnd; break; case AST_BoolOr: ParentExpression->impl.operation.impl.boolean = BooleanOr; break; case AST_BoolXor: ParentExpression->impl.operation.impl.boolean = BooleanXor; break; default: PANIC("Current node is not an boolean operater"); break; } Expression* lhs = ((Expression**) ParentExpression->impl.operation.operands->data)[0]; Expression* rhs = ((Expression**) ParentExpression->impl.operation.operands->data)[1]; Type* LeftOperandType = lhs->result; Type* RightOperandType = rhs->result; // should not be a box or a reference if(LeftOperandType->kind != TypeKindPrimitive && LeftOperandType->kind != TypeKindComposite) { print_diagnostic(current_file, &lhs->nodePtr->location, Error, "invalid type for boolean operation"); return SEMANTIC_ERROR; } if(RightOperandType->kind != TypeKindPrimitive && RightOperandType->kind != TypeKindComposite) { print_diagnostic(current_file, &rhs->nodePtr->location, Error, "invalid type for boolean operation"); return SEMANTIC_ERROR; } // should not be a float if (LeftOperandType->kind == TypeKindComposite) { if (LeftOperandType->impl.composite.primitive == Float) { print_diagnostic(current_file, &lhs->nodePtr->location, Error, "operand must not be a float"); return SEMANTIC_ERROR; } } else if (LeftOperandType->kind == TypeKindPrimitive) { if (LeftOperandType->impl.primitive == Float) { print_diagnostic(current_file, &lhs->nodePtr->location, Error, "operand must not be a float"); return SEMANTIC_ERROR; } } else if (RightOperandType->kind == TypeKindComposite) { if (RightOperandType->impl.composite.primitive == Float) { print_diagnostic(current_file, &rhs->nodePtr->location, Error, "operand must not be a float"); return SEMANTIC_ERROR; } } else if (RightOperandType->kind == TypeKindPrimitive) { if (RightOperandType->impl.primitive == Float) { print_diagnostic(current_file, &rhs->nodePtr->location, Error, "operand must not be a float"); return SEMANTIC_ERROR; } } ParentExpression->result = createTypeFromOperands(LeftOperandType, RightOperandType, currentNode); for (size_t i = 0 ; i < ParentExpression->impl.operation.operands->len; i++) { Expression * operand = g_array_index(ParentExpression->impl.operation.operands, Expression*, i); if(!compareTypes(operand->result, ParentExpression->result)) { Expression * expr; int status = createTypeCastFromExpression(operand, ParentExpression->result, &expr); if(status == SEMANTIC_ERROR) { return SEMANTIC_ERROR; } g_array_index(ParentExpression->impl.operation.operands, Expression*, i) = expr; } } return SEMANTIC_OK; } int createBoolNotOperation(Expression *ParentExpression, AST_NODE_PTR currentNode) { //fill kind and Nodeptr ParentExpression->impl.operation.kind = Boolean; ParentExpression->impl.operation.nodePtr = currentNode; //fill Operand Expression* expression = createExpression(currentNode->children[0]); if(NULL == expression){ return SEMANTIC_ERROR; } g_array_append_val(ParentExpression->impl.operation.operands , expression); ParentExpression->impl.operation.impl.boolean = BooleanNot; Type* Operand = ((Expression**)ParentExpression->impl.operation.operands)[0]->result; Type* result = mem_alloc(MemoryNamespaceSet,sizeof(Type)); result->nodePtr = currentNode; if (Operand->kind == TypeKindBox || Operand->kind == TypeKindReference) { print_diagnostic(current_file, &Operand->nodePtr->location, Error, "Operand must be a variant of primitive type int"); return SEMANTIC_ERROR; } if (Operand->kind == TypeKindPrimitive) { if (Operand->impl.primitive == Float) { print_diagnostic(current_file, &Operand->nodePtr->location, Error, "Operand must be a variant of primitive type int"); return SEMANTIC_ERROR; } result->kind = Operand->kind; result->impl = Operand->impl; } else if(Operand->kind == TypeKindComposite) { if (Operand->impl.composite.primitive == Float) { print_diagnostic(current_file, &Operand->nodePtr->location, Error, "Operand must be a variant of primitive type int"); return SEMANTIC_ERROR; } result->kind = Operand->kind; result->impl = Operand->impl; } ParentExpression->result = result; for (size_t i = 0 ; i < ParentExpression->impl.operation.operands->len; i++) { Expression * operand = g_array_index(ParentExpression->impl.operation.operands, Expression*, i); if(!compareTypes(operand->result, ParentExpression->result)) { Expression * expr; int status = createTypeCastFromExpression(operand, ParentExpression->result, &expr); if(status == SEMANTIC_ERROR) { return SEMANTIC_ERROR; } g_array_index(ParentExpression->impl.operation.operands, Expression*, i) = expr; } } return SEMANTIC_OK; } bool isScaleEqual(double leftScale, double rightScale) { int leftIntScale = (int) (leftScale * BASE_BYTES); int rightIntScale = (int) (rightScale * BASE_BYTES); return leftIntScale == rightIntScale; } int createBitOperation(Expression* ParentExpression, AST_NODE_PTR currentNode) { // fill kind and Nodeptr ParentExpression->impl.operation.kind = Boolean; ParentExpression->impl.operation.nodePtr = currentNode; // fill Operands for (size_t i = 0; i < currentNode->child_count; i++) { Expression* expression = createExpression(currentNode->children[i]); if(NULL == expression) { return SEMANTIC_ERROR; } g_array_append_val(ParentExpression->impl.operation.operands , expression); } switch (currentNode->kind) { case AST_BitAnd: ParentExpression->impl.operation.impl.bitwise = BitwiseAnd; break; case AST_BitOr: ParentExpression->impl.operation.impl.bitwise = BitwiseOr; break; case AST_BitXor: ParentExpression->impl.operation.impl.bitwise = BitwiseXor; break; default: PANIC("Current node is not an bitwise operater"); break; } Type *result = mem_alloc(MemoryNamespaceSet,sizeof(Type)); result->nodePtr = currentNode; Expression* lhs = ((Expression**) ParentExpression->impl.operation.operands->data)[0]; Expression* rhs = ((Expression**) ParentExpression->impl.operation.operands->data)[1]; Type* LeftOperandType = lhs->result; Type* RightOperandType = rhs->result; //should not be a box or a reference if (LeftOperandType->kind != TypeKindPrimitive && LeftOperandType->kind != TypeKindComposite) { print_diagnostic(current_file, &lhs->nodePtr->location, Error, "Must be a type variant of int"); return SEMANTIC_ERROR; } if (RightOperandType->kind != TypeKindPrimitive && RightOperandType->kind != TypeKindComposite) { print_diagnostic(current_file, &rhs->nodePtr->location, Error, "Must be a type variant of int"); return SEMANTIC_ERROR; } if (LeftOperandType->kind == TypeKindPrimitive && RightOperandType->kind == TypeKindPrimitive) { if (LeftOperandType->impl.primitive == Float) { print_diagnostic(current_file, &lhs->nodePtr->location, Error, "Must be a type variant of int"); return SEMANTIC_ERROR; } if (RightOperandType->impl.primitive == Float) { print_diagnostic(current_file, &rhs->nodePtr->location, Error, "Must be a type variant of int"); return SEMANTIC_ERROR; } result->kind = TypeKindPrimitive; result->impl.primitive = Int; } else if (LeftOperandType->kind == TypeKindPrimitive && RightOperandType->kind == TypeKindComposite) { if (LeftOperandType->impl.primitive == Float) { print_diagnostic(current_file, &lhs->nodePtr->location, Error, "Must be a type variant of int"); return SEMANTIC_ERROR; } if (RightOperandType->impl.composite.primitive == Float) { print_diagnostic(current_file, &rhs->nodePtr->location, Error, "Must be a type variant of int"); return SEMANTIC_ERROR; } result->kind = TypeKindPrimitive; result->impl.primitive = Int; }else if (LeftOperandType->kind == TypeKindComposite && RightOperandType->kind == TypeKindPrimitive) { if (LeftOperandType->impl.composite.primitive == Float) { print_diagnostic(current_file, &lhs->nodePtr->location, Error, "Must be a type variant of int"); return SEMANTIC_ERROR; } if (RightOperandType->impl.primitive == Float) { print_diagnostic(current_file, &rhs->nodePtr->location, Error, "Must be a type variant of int"); return SEMANTIC_ERROR; } result->kind = TypeKindPrimitive; result->impl.primitive = Int; } else { if (RightOperandType->impl.composite.primitive == Float) { print_diagnostic(current_file, &rhs->nodePtr->location, Error, "Must be a type variant of int"); return SEMANTIC_ERROR; } if (LeftOperandType->impl.composite.primitive == Float) { print_diagnostic(current_file, &lhs->nodePtr->location, Error, "Must be a type variant of int"); return SEMANTIC_ERROR; } if (!isScaleEqual(LeftOperandType->impl.composite.scale, RightOperandType->impl.composite.scale)) { print_diagnostic(current_file, ¤tNode->location, Error, "Operands must be of equal size"); return SEMANTIC_ERROR; } result->kind = TypeKindComposite; result->impl.composite.nodePtr = currentNode; result->impl.composite.scale = LeftOperandType->impl.composite.scale; result->impl.composite.sign = MAX(LeftOperandType->impl.composite.sign, RightOperandType->impl.composite.sign); } ParentExpression->result = result; for (size_t i = 0 ; i < ParentExpression->impl.operation.operands->len; i++) { Expression * operand = g_array_index(ParentExpression->impl.operation.operands, Expression*, i); if(!compareTypes(operand->result, ParentExpression->result)) { Expression * expr; int status = createTypeCastFromExpression(operand, ParentExpression->result, &expr); if(status == SEMANTIC_ERROR) { return SEMANTIC_ERROR; } g_array_index(ParentExpression->impl.operation.operands, Expression*, i) = expr; } } return 0; } int createBitNotOperation(Expression* ParentExpression, AST_NODE_PTR currentNode) { //fill kind and Nodeptr ParentExpression->impl.operation.kind = Bitwise; ParentExpression->impl.operation.nodePtr = currentNode; //fill Operand Expression* expression = createExpression(currentNode->children[0]); if(NULL == expression){ return SEMANTIC_ERROR; } g_array_append_val(ParentExpression->impl.operation.operands , expression); ParentExpression->impl.operation.impl.bitwise = BitwiseNot; Type* Operand = ((Expression**) ParentExpression->impl.operation.operands)[0]->result; Type* result = mem_alloc(MemoryNamespaceSet,sizeof(Type)); result->nodePtr = currentNode; if (Operand->kind == TypeKindPrimitive) { if (Operand->impl.primitive == Float) { print_diagnostic(current_file, &Operand->nodePtr->location, Error, "Operand type must be a variant of int"); return SEMANTIC_ERROR; } result->kind = TypeKindPrimitive; result->impl.primitive = Int; }else if(Operand->kind == TypeKindComposite) { if (Operand->impl.composite.primitive == Float) { print_diagnostic(current_file, &Operand->nodePtr->location, Error, "Operand type must be a variant of int"); return SEMANTIC_ERROR; } result->kind = TypeKindComposite; result->impl.composite.nodePtr = currentNode; result->impl.composite.primitive = Int; result->impl.composite.sign = Operand->impl.composite.sign; result->impl.composite.scale = Operand->impl.composite.scale; } ParentExpression->result = result; for (size_t i = 0 ; i < ParentExpression->impl.operation.operands->len; i++) { Expression * operand = g_array_index(ParentExpression->impl.operation.operands, Expression*, i); if(!compareTypes(operand->result, ParentExpression->result)) { Expression * expr; int status = createTypeCastFromExpression(operand, ParentExpression->result, &expr); if(status == SEMANTIC_ERROR) { return SEMANTIC_ERROR; } g_array_index(ParentExpression->impl.operation.operands, Expression*, i) = expr; } } return SEMANTIC_OK; } /** * @brief Return a copy of all BoxMembers specified by their name in names from a boxes type * Will run recursively in case the first name refers to a subbox * @param currentBoxType * @param names * @return */ GArray *getBoxMember(Type *currentBoxType, GArray *names) { GArray *members = mem_new_g_array(MemoryNamespaceSet, sizeof(BoxMember)); // list of members of the type GHashTable *memberList = currentBoxType->impl.box->member; // name of member to extract const char *currentName = g_array_index(names, const char *, 0); // look for member of this name if (g_hash_table_contains(memberList, currentName)) { // get member and store in array BoxMember *currentMember = g_hash_table_lookup(memberList, currentName); g_array_append_val(members, currentMember); // last name in list, return g_array_remove_index(names, 0); if (names->len == 0) { return members; } // other names may refer to members of child boxes if (currentMember->type->kind == TypeKindBox) { GArray *otherMember = getBoxMember(currentMember->type, names); if (NULL == otherMember) { return NULL; } g_array_append_vals(members, (BoxMember *) otherMember->data, otherMember->len); return members; } } return NULL; } int createBoxAccess(Expression* ParentExpression,AST_NODE_PTR currentNode) { const char* boxname = currentNode->children[0]->value; Variable* boxVariable = NULL; int status = getVariableFromScope(boxname, &boxVariable); if(status == SEMANTIC_ERROR){ print_diagnostic(current_file, ¤tNode->children[0]->location, Error, "Variable of name `%s` does not exist"); return SEMANTIC_ERROR; } Type* boxType; if(boxVariable->kind == VariableKindDeclaration){ boxType = boxVariable->impl.declaration.type; } else if (boxVariable->kind == VariableKindDefinition){ boxType = boxVariable->impl.definiton.declaration.type; } else{ return SEMANTIC_ERROR; } if (boxType->kind != TypeKindBox) { return SEMANTIC_ERROR; } // filling boxAccess variable ParentExpression->impl.variable->kind = VariableKindBoxMember; ParentExpression->impl.variable->nodePtr = currentNode; ParentExpression->impl.variable->name = NULL; ParentExpression->impl.variable->impl.member.nodePtr = currentNode; //filling boxacces.variable ParentExpression->impl.variable->impl.member.variable = boxVariable; //first one is the box itself GArray* names = mem_alloc(MemoryNamespaceSet,sizeof(GArray)); if(currentNode->kind == AST_IdentList){ for (size_t i = 1; i < currentNode->child_count; i++){ g_array_append_val(names, currentNode->children[i]->value); } }else if(currentNode->kind == AST_List){ for (size_t i = 1; i < currentNode->children[1]->child_count; i++){ g_array_append_val(names, currentNode->children[1]->children[i]->value); } }else{ PANIC("current Node is not an Access"); } GArray * boxMember = getBoxMember(boxType, names); ParentExpression->impl.variable->impl.member.member = boxMember; ParentExpression->result = g_array_index(boxMember,BoxMember,boxMember->len).type; return SEMANTIC_OK; } int createTypeCast(Expression* ParentExpression, AST_NODE_PTR currentNode){ DEBUG("create type cast"); ParentExpression->impl.typecast.nodePtr = currentNode; ParentExpression->impl.typecast.operand = createExpression(currentNode->children[0]); if (ParentExpression->impl.typecast.operand == NULL){ return SEMANTIC_ERROR; } if (ParentExpression->impl.typecast.operand->result->kind != TypeKindComposite && ParentExpression->impl.typecast.operand->result->kind != TypeKindPrimitive){ return SEMANTIC_ERROR; } Type *target = mem_alloc(MemoryNamespaceSet, sizeof(Type)); int status = get_type_impl(currentNode->children[1], &target); if (status) { print_diagnostic(current_file, ¤tNode->children[1]->location, Error, "Unknown type"); return SEMANTIC_ERROR; } ParentExpression->impl.typecast.targetType = target; ParentExpression->result = target; return SEMANTIC_OK; } int createTransmute(Expression* ParentExpression, AST_NODE_PTR currentNode){ ParentExpression->impl.transmute.nodePtr = currentNode; ParentExpression->impl.transmute.operand = createExpression(currentNode->children[0]); if (ParentExpression->impl.transmute.operand == NULL){ return SEMANTIC_ERROR; } Type* target = mem_alloc(MemoryNamespaceSet,sizeof(Type)); int status = get_type_impl(currentNode->children[1], &target); if (status){ print_diagnostic(current_file, ¤tNode->children[1]->location, Error, "Unknown type"); return SEMANTIC_ERROR; } ParentExpression->impl.typecast.targetType = target; ParentExpression->result = target; return SEMANTIC_OK; } int createDeref(Expression* ParentExpression, AST_NODE_PTR currentNode) { assert(currentNode->child_count == 2); Dereference deref; deref.nodePtr = currentNode; deref.index = createExpression(AST_get_node(currentNode,0)); //index has to be made if(deref.index == NULL) { return SEMANTIC_ERROR; } Type * indexType = deref.index->result; //indexType can only be a composite or a primitive if(indexType->kind != TypeKindComposite && indexType->kind != TypeKindPrimitive) { return SEMANTIC_ERROR; } //indexType can only be int if(indexType->kind == TypeKindPrimitive) { if (indexType->impl.primitive != Int) { return SEMANTIC_ERROR; } } if(indexType->kind == TypeKindComposite) { if (indexType->impl.composite.primitive != Int) { return SEMANTIC_ERROR; } } deref.variable = createExpression(AST_get_node(currentNode,1)); //variable has to be made if(deref.index == NULL) { return SEMANTIC_ERROR; } //variable can only be a reference if(deref.variable->result->kind != TypeKindReference) { return SEMANTIC_ERROR; } ParentExpression->impl.dereference = deref; ParentExpression->result = deref.variable->result->impl.reference; return SEMANTIC_OK; } int createAddressOf(Expression* ParentExpression, AST_NODE_PTR currentNode) { assert(currentNode != NULL); assert(currentNode->child_count == 1); AddressOf address_of; address_of.node_ptr = currentNode; address_of.variable = createExpression(AST_get_node(currentNode,0)); if (address_of.variable == NULL) { return SEMANTIC_ERROR; } Type *resultType = malloc(sizeof(Type)); resultType->nodePtr = currentNode; resultType->kind = TypeKindReference; resultType->impl.reference = address_of.variable->result; ParentExpression->impl.addressOf = address_of; ParentExpression->result = resultType; return SEMANTIC_OK; } Expression *createExpression(AST_NODE_PTR currentNode){ DEBUG("create Expression"); Expression *expression = mem_alloc(MemoryNamespaceSet,sizeof(Expression)); expression->nodePtr = currentNode; switch (currentNode->kind) { case AST_Int: case AST_Float: expression->kind = ExpressionKindConstant; expression->impl.constant = createTypeValue(currentNode); expression->result = expression->impl.constant.type; break; case AST_String: expression->kind = ExpressionKindConstant; expression->impl.constant = createString(currentNode); expression->result = expression->impl.constant.type; break; case AST_Ident: DEBUG("find var"); expression->kind = ExpressionKindVariable; int status = getVariableFromScope(currentNode->value, &(expression->impl.variable)); if (status == SEMANTIC_ERROR) { DEBUG("Identifier is not in current scope"); print_diagnostic(current_file, ¤tNode->location, Error, "Variable not found"); return NULL; } switch (expression->impl.variable->kind) { case VariableKindDeclaration: expression->result = expression->impl.variable->impl.declaration.type; DEBUG("%d", expression->impl.variable->impl.declaration.type->kind); break; case VariableKindDefinition: expression->result = expression->impl.variable->impl.definiton.declaration.type; break; default: PANIC("current Variable should not be an BoxMember"); break; } break; case AST_Add: case AST_Sub: case AST_Mul: case AST_Div: expression->kind = ExpressionKindOperation; if (createArithOperation(expression, currentNode, 2)) { return NULL; } break; case AST_Negate: expression->kind = ExpressionKindOperation; if (createArithOperation(expression, currentNode, 1)) { return NULL; } break; case AST_Eq: case AST_Less: case AST_Greater: expression->kind = ExpressionKindOperation; if (createRelationalOperation(expression, currentNode)) { return NULL; } break; case AST_BoolAnd: case AST_BoolOr: case AST_BoolXor: expression->kind = ExpressionKindOperation; if (createBoolOperation(expression, currentNode)) { return NULL; } break; case AST_BoolNot: expression->kind = ExpressionKindOperation; if (createBoolNotOperation(expression, currentNode)) { return NULL; } break; case AST_BitAnd: case AST_BitOr: case AST_BitXor: expression->kind = ExpressionKindOperation; if (createBitOperation(expression, currentNode)) { return NULL; } break; case AST_BitNot: expression->kind = ExpressionKindOperation; if (createBitNotOperation(expression, currentNode)) { return NULL; } break; case AST_IdentList: case AST_List: expression->kind = ExpressionKindVariable; if (createBoxAccess(expression, currentNode)) { return NULL; } break; case AST_Typecast: expression->kind = ExpressionKindTypeCast; if (createTypeCast(expression, currentNode)) { return NULL; } break; case AST_Transmute: expression->kind = ExpressionKindTransmute; if (createTransmute(expression, currentNode)) { return NULL; } break; case AST_Dereference: expression->kind = ExpressionKindDereference; if(createDeref(expression, currentNode)) { return NULL; } break; case AST_AddressOf: expression->kind = ExpressionKindAddressOf; if(createAddressOf(expression,currentNode)) { return NULL; } break; default: PANIC("Node is not an expression but from kind: %i", currentNode->kind); break; } DEBUG("expression result typekind: %d",expression->result->kind); DEBUG("successfully created Expression"); return expression; } bool compareTypes(Type * leftType, Type * rightType) { if (leftType->kind != rightType->kind) { return FALSE; } if (leftType->kind == TypeKindPrimitive) { if(leftType->impl.primitive != rightType->impl.primitive) { return FALSE; } return TRUE; } if ( leftType->kind == TypeKindComposite) { CompositeType leftComposite = leftType->impl.composite; CompositeType rightComposite = leftType->impl.composite; if(leftComposite.primitive != rightComposite.primitive) { return FALSE; } if(leftComposite.sign != rightComposite.sign) { return FALSE; } if(leftComposite.scale != rightComposite.scale) { return FALSE; } return TRUE; } if(leftType->kind == TypeKindBox) { if(leftType->impl.box != rightType->impl.box) { return FALSE; } return TRUE; } if(leftType->kind == TypeKindReference) { bool result = compareTypes(leftType->impl.reference, rightType->impl.reference); return result; } return FALSE; } int createAssign(Statement* ParentStatement, AST_NODE_PTR currentNode){ DEBUG("create Assign"); Assignment assign; assign.nodePtr = currentNode; const char* varName = currentNode->children[0]->value; int status = getVariableFromScope(varName, &assign.variable); if(status){ return SEMANTIC_ERROR; } assign.value = createExpression(currentNode->children[1]); if(assign.value == NULL){ return SEMANTIC_ERROR; } Type* varType = NULL; if(assign.variable->kind == VariableKindDeclaration) { varType = assign.variable->impl.declaration.type; }else if(assign.variable->kind == VariableKindDefinition) { varType = assign.variable->impl.definiton.declaration.type; } bool result =compareTypes(varType, assign.value->result); if(result ==FALSE ) { return SEMANTIC_ERROR; } ParentStatement->impl.assignment = assign; return SEMANTIC_OK; } int createStatement(Block * block, AST_NODE_PTR currentNode); int fillBlock(Block * block,AST_NODE_PTR currentNode){ DEBUG("start filling Block"); block->nodePtr = currentNode; block->statemnts = g_array_new(FALSE,FALSE,sizeof(Statement*)); GHashTable * lowerScope = g_hash_table_new(g_str_hash,g_str_equal); g_array_append_val(Scope, lowerScope); for(size_t i = 0; i < currentNode->child_count; i++){ int signal = createStatement(block, AST_get_node(currentNode, i)); if(signal){ return SEMANTIC_ERROR; } } g_hash_table_destroy(lowerScope); g_array_remove_index(Scope, Scope->len-1); DEBUG("created Block successfully"); return SEMANTIC_OK; } int createWhile(Statement * ParentStatement, AST_NODE_PTR currentNode){ assert(ParentStatement != NULL); assert(currentNode != NULL); assert(currentNode->kind == AST_While); While whileStruct; whileStruct.nodePtr = currentNode; whileStruct.conditon = createExpression(currentNode->children[0]); if(NULL == whileStruct.conditon){ return SEMANTIC_ERROR; } AST_NODE_PTR statementList = currentNode->children[1]; int signal = fillBlock(&whileStruct.block,statementList); if(signal){ return SEMANTIC_ERROR; } ParentStatement->impl.whileLoop = whileStruct; return SEMANTIC_OK; } int createIf(Branch* Parentbranch, AST_NODE_PTR currentNode){ If ifbranch; ifbranch.nodePtr = currentNode; Expression* expression = createExpression(currentNode->children[0]); if (NULL == expression) { return SEMANTIC_ERROR; } ifbranch.conditon = expression; int status = fillBlock(&ifbranch.block, currentNode->children[1]); if(status){ return SEMANTIC_ERROR; } Parentbranch->ifBranch = ifbranch; return SEMANTIC_OK; } int createElse(Branch* Parentbranch, AST_NODE_PTR currentNode){ Else elseBranch; elseBranch.nodePtr = currentNode; int status = fillBlock(&elseBranch.block, currentNode->children[0]); if(status){ return SEMANTIC_ERROR; } Parentbranch->elseBranch = elseBranch; return SEMANTIC_OK; } int createElseIf(Branch* Parentbranch, AST_NODE_PTR currentNode){ ElseIf elseIfBranch; elseIfBranch.nodePtr = currentNode; Expression* expression = createExpression(currentNode->children[0]); if (NULL == expression) { return SEMANTIC_ERROR; } elseIfBranch.conditon = expression; int status = fillBlock(&elseIfBranch.block, currentNode->children[1]); if(status){ return SEMANTIC_ERROR; } g_array_append_val(Parentbranch->elseIfBranches,elseIfBranch); return SEMANTIC_OK; } int createBranch(Statement* ParentStatement,AST_NODE_PTR currentNode){ Branch Branch; Branch.nodePtr = currentNode; for (size_t i = 0; i < currentNode->child_count; i++ ){ switch (currentNode->children[i]->kind){ case AST_If: if(createIf(&Branch, currentNode->children[i])){ return SEMANTIC_ERROR; } break; case AST_IfElse: if(createElseIf(&Branch, currentNode)){ return SEMANTIC_ERROR; } break; case AST_Else: if(createElse(&Branch, currentNode->children[i])){ return SEMANTIC_ERROR; } break; default: PANIC("current node is not part of a Branch"); break; } } ParentStatement->impl.branch = Branch; return SEMANTIC_OK; } int getFunction(const char *name, Function **function); int createfuncall(Statement *parentStatement, AST_NODE_PTR currentNode) { assert(currentNode != NULL); assert(currentNode->child_count == 2); AST_NODE_PTR argsListNode = AST_get_node(currentNode, 1); AST_NODE_PTR nameNode = AST_get_node(currentNode, 0); FunctionCall funcall; Function * fun = NULL; if(nameNode->kind == AST_Ident) { int result = getFunction(nameNode->value, &fun); if (result == SEMANTIC_ERROR) { return SEMANTIC_ERROR; } } if(nameNode->kind == AST_IdentList) { assert(nameNode->child_count > 1); //idents.boxname.funname() //only boxname and funname are needed, because the combination is unique const char* boxName = AST_get_node( nameNode, (nameNode->child_count - 2))->value; const char* funName = AST_get_node( nameNode, (nameNode->child_count - 1))->value; const char* name = g_strjoin("", boxName, "." , funName, NULL ); int result = getFunction(name,&fun); if (result) { return SEMANTIC_ERROR; } } funcall.function = fun; funcall.nodePtr = currentNode; size_t paramCount = 0; if(fun->kind == FunctionDeclarationKind) { paramCount = fun->impl.declaration.parameter->len; }else if(fun->kind == FunctionDefinitionKind) { paramCount = fun->impl.definition.parameter->len; } size_t count = 0; for(size_t i = 0; i < argsListNode->child_count; i++) { count += AST_get_node(argsListNode, i)->child_count; } if(count != paramCount) { return SEMANTIC_ERROR; } GArray * expressions = mem_new_g_array(MemoryNamespaceSet,(sizeof(Expression*))); //exprlists for( size_t i = 0; i < argsListNode->child_count; i++) { AST_NODE_PTR currentExprList = AST_get_node(argsListNode, i); for( size_t j = 0; j < currentExprList->child_count; j++) { Expression *expr = createExpression(AST_get_node(currentExprList, j)); if(expr == NULL) { return SEMANTIC_ERROR; } g_array_append_val(expressions, expr); } } funcall.expressions = expressions; parentStatement->impl.call = funcall; return SEMANTIC_OK; } int createStatement(Block * Parentblock , AST_NODE_PTR currentNode){ DEBUG("create Statement"); switch(currentNode->kind){ case AST_Decl:{ GArray *variable= g_array_new(FALSE, FALSE, sizeof(Variable*)); int status = createDecl(currentNode, &variable); if(status){ return SEMANTIC_ERROR; } for(size_t i = 0; i < variable->len ; i++){ Statement * statement = mem_alloc(MemoryNamespaceSet,sizeof(Statement)); statement->nodePtr = currentNode; statement->kind = StatementKindDeclaration; statement->impl.variable = g_array_index(variable,Variable *,i); g_array_append_val(Parentblock->statemnts,statement); } } break; case AST_Def:{ GArray *variable= g_array_new(FALSE, FALSE, sizeof(Variable*)); int status = createDef(currentNode, &variable); if(status){ return SEMANTIC_ERROR; } for(size_t i = 0; i < variable->len ; i++){ Statement * statement = mem_alloc(MemoryNamespaceSet,sizeof(Statement)); statement->nodePtr = currentNode; statement->kind = StatementKindDefinition; statement->impl.variable = g_array_index(variable,Variable *,i); g_array_append_val(Parentblock->statemnts,statement); } } break; case AST_While:{ Statement * statement = mem_alloc(MemoryNamespaceSet,sizeof(Statement)); statement->nodePtr = currentNode; statement->kind = StatementKindWhile; if(createWhile(statement, currentNode)){ return SEMANTIC_ERROR; } g_array_append_val(Parentblock->statemnts,statement); } break; case AST_Stmt:{ Statement * statement = mem_alloc(MemoryNamespaceSet,sizeof(Statement)); statement->nodePtr = currentNode; statement->kind = StatementKindBranch; if(createBranch(statement, currentNode)){ return SEMANTIC_ERROR; } g_array_append_val(Parentblock->statemnts,statement); } break; case AST_Assign:{ Statement * statement = mem_alloc(MemoryNamespaceSet,sizeof(Statement)); statement->nodePtr = currentNode; statement->kind = StatementKindAssignment; if(createAssign(statement, currentNode)){ return SEMANTIC_ERROR; } g_array_append_val(Parentblock->statemnts,statement); } break; case AST_Call: Statement * statement = mem_alloc(MemoryNamespaceSet,sizeof(Statement)); statement->nodePtr = currentNode; statement->kind = StatementKindFunctionCall; int result = createfuncall(statement, currentNode); if(result == SEMANTIC_ERROR) { return SEMANTIC_ERROR; } break; default: PANIC("Node is not a statement"); break; } return SEMANTIC_OK; } int createParam(GArray * Paramlist ,AST_NODE_PTR currentNode){ assert(currentNode->kind == AST_Parameter); DEBUG("start param"); DEBUG("current node child count: %i",currentNode->child_count); AST_NODE_PTR paramdecl = currentNode->children[1]; AST_NODE_PTR ioQualifierList = currentNode->children[0]; ParameterDeclaration decl; decl.nodePtr = paramdecl; DEBUG("iolistnode child count: %i", ioQualifierList->child_count ); if(ioQualifierList->child_count == 2){ decl.qualifier = InOut; }else if(ioQualifierList->child_count == 1){ if(strcmp(ioQualifierList->children[0]->value , "in") == 0){ decl.qualifier = In; }else if(strcmp(ioQualifierList->children[0]->value , "out") == 0){ decl.qualifier = Out; }else{ PANIC("IO_Qualifier is not in or out"); } }else{ PANIC("IO_Qualifier has not the right amount of children"); } int signal = get_type_impl(paramdecl->children[0], &(decl.type)); if(signal){ return SEMANTIC_ERROR; } Parameter param; param.nodePtr = currentNode; param.kind = ParameterDeclarationKind; param.impl.declaration = decl; param.name = paramdecl->children[1]->value; DEBUG("param name: %s", param.name); g_array_append_val(Paramlist, param); DEBUG("create var for param"); Variable * paramvar = mem_alloc(MemoryNamespaceSet,sizeof(Variable)); paramvar->kind = VariableKindDeclaration; paramvar->name = param.name; paramvar->nodePtr = currentNode; paramvar->impl.declaration.nodePtr = currentNode; paramvar->impl.declaration.qualifier = Local; paramvar->impl.declaration.type = param.impl.declaration.type; if (g_hash_table_contains(functionParameter, param.name)){ return SEMANTIC_ERROR; } g_hash_table_insert(functionParameter, (gpointer)param.name, paramvar); DEBUG("created param successfully"); return SEMANTIC_OK; } int createFunDef(Function * Parentfunction ,AST_NODE_PTR currentNode){ DEBUG("start fundef"); AST_NODE_PTR nameNode = currentNode->children[0]; AST_NODE_PTR paramlistlist = currentNode->children[1]; AST_NODE_PTR statementlist = currentNode->children[2]; FunctionDefinition fundef; fundef.nodePtr = currentNode; fundef.name = nameNode->value; fundef.body = mem_alloc(MemoryNamespaceSet,sizeof(Block)); fundef.parameter = g_array_new(FALSE, FALSE, sizeof(Parameter)); DEBUG("paramlistlist child count: %i", paramlistlist->child_count); for(size_t i = 0; i < paramlistlist->child_count; i++){ //all parameterlists AST_NODE_PTR paramlist = paramlistlist->children[i]; DEBUG("paramlist child count: %i", paramlist->child_count); for (size_t j = 0; j < paramlist->child_count; j++){ DEBUG("param child count: %i", AST_get_node(paramlist, j)->child_count); int signal = createParam(fundef.parameter ,AST_get_node(paramlist, j)); //all params per list if (signal){ return SEMANTIC_ERROR; } } DEBUG("End of Paramlist"); } int signal = fillBlock(fundef.body, statementlist); if(signal){ return SEMANTIC_ERROR; } Parentfunction->nodePtr = currentNode; Parentfunction->kind = FunctionDefinitionKind; Parentfunction->impl.definition = fundef; Parentfunction->name = fundef.name; return SEMANTIC_OK; } bool compareParameter(GArray *leftParameter,GArray *rightParameter) { if(leftParameter->len != rightParameter->len) { return FALSE; } for(size_t i = 0; i < leftParameter->len; i++) { Parameter currentLeftParam = g_array_index(leftParameter,Parameter ,i); Parameter currentRightParam = g_array_index(leftParameter,Parameter ,i); if(strcmp(currentLeftParam.name, currentRightParam.name) !=0 ) { return FALSE; } if(currentLeftParam.kind != currentRightParam.kind) { return FALSE; } if(currentLeftParam.kind == ParameterDeclarationKind) { ParameterDeclaration leftDecl = currentLeftParam.impl.declaration; ParameterDeclaration rightDecl = currentLeftParam.impl.declaration; if(leftDecl.qualifier != rightDecl.qualifier) { return FALSE; } if(compareTypes(leftDecl.type, rightDecl.type) == FALSE) { return FALSE; } } } return TRUE; } int addFunction(const char *name, Function *function) { if(function->kind == FunctionDefinitionKind) { if(g_hash_table_contains(definedFunctions, name)) { return SEMANTIC_ERROR; } g_hash_table_insert(declaredFunctions, (gpointer) name, function); }else if(function->kind == FunctionDeclarationKind) { if(g_hash_table_contains(declaredFunctions, name)) { Function * declaredFunction = g_hash_table_lookup(declaredFunctions, name); bool result = compareParameter(declaredFunction->impl.declaration.parameter, function->impl.declaration.parameter); if(result == FALSE) { return SEMANTIC_ERROR; } //a function can have multiple declartations but all have to be identical } g_hash_table_insert(declaredFunctions,(gpointer)name, function); } return SEMANTIC_OK; } int getFunction(const char *name, Function **function) { if(g_hash_table_contains(definedFunctions, name)) { Function * fun = g_hash_table_lookup(definedFunctions, name); *function = fun; return SEMANTIC_OK; } if(g_hash_table_contains(declaredFunctions, name)) { Function * fun = g_hash_table_lookup(declaredFunctions, name); *function = fun; return SEMANTIC_OK; } return SEMANTIC_ERROR; } int createFunDecl(Function * Parentfunction ,AST_NODE_PTR currentNode){ DEBUG("start fundecl"); AST_NODE_PTR nameNode = currentNode->children[0]; AST_NODE_PTR paramlistlist = currentNode->children[1]; FunctionDeclaration fundecl; fundecl.nodePtr = currentNode; fundecl.name = nameNode->value; fundecl.parameter = mem_alloc(MemoryNamespaceSet,sizeof(GArray)); for(size_t i = 0; i < paramlistlist->child_count; i++){ //all parameterlists AST_NODE_PTR paramlist = paramlistlist->children[i]; for (size_t j = 0; j < paramlistlist->child_count; j++){ int signal = createParam(fundecl.parameter ,paramlist->children[i]); //all params per list if (signal){ return SEMANTIC_ERROR; } } } Parentfunction->nodePtr = currentNode; Parentfunction->kind = FunctionDefinitionKind; Parentfunction->impl.declaration = fundecl; Parentfunction->name = fundecl.name; return SEMANTIC_OK; } int createFunction(Function ** function, AST_NODE_PTR currentNode){ assert(currentNode->kind == AST_Fun); Function * fun = mem_alloc(MemoryNamespaceSet,sizeof(Function)); functionParameter = g_hash_table_new(g_str_hash,g_str_equal); if(currentNode->child_count == 2){ int signal = createFunDecl(fun, currentNode); if (signal){ return SEMANTIC_ERROR; } }else if(currentNode->child_count == 3){ int signal = createFunDef(fun, currentNode); if (signal){ return SEMANTIC_ERROR; } }else { PANIC("function should have 2 or 3 children"); } g_hash_table_destroy(functionParameter); int result = addFunction(fun->name,fun); if(result == SEMANTIC_ERROR) { return SEMANTIC_ERROR; } *function = fun; return SEMANTIC_OK; } int createDeclMember(BoxType * ParentBox, AST_NODE_PTR currentNode){ Type * declType = mem_alloc(MemoryNamespaceSet,sizeof(Type)); int status = get_type_impl(currentNode->children[0],&declType); if(status){ return SEMANTIC_ERROR; } AST_NODE_PTR nameList = currentNode->children[1]; for(size_t i = 0; i < nameList->child_count; i++){ BoxMember * decl = mem_alloc(MemoryNamespaceSet,sizeof(BoxMember)); decl->name = nameList->children[i]->value; decl->nodePtr = currentNode; decl->box = ParentBox; decl->initalizer = NULL; decl->type = declType; if(g_hash_table_contains(ParentBox->member, (gpointer)decl->name)){ return SEMANTIC_ERROR; } g_hash_table_insert(ParentBox->member,(gpointer)decl->name,decl); } return SEMANTIC_OK; } int createDefMember(BoxType *ParentBox, AST_NODE_PTR currentNode){ AST_NODE_PTR declNode = currentNode->children[0]; AST_NODE_PTR expressionNode = currentNode->children[1]; AST_NODE_PTR nameList = declNode->children[1]; Type * declType = mem_alloc(MemoryNamespaceSet,sizeof(Type)); int status = get_type_impl(currentNode->children[0],&declType); if(status){ return SEMANTIC_ERROR; } Expression * init = createExpression(expressionNode);; if (init == NULL){ return SEMANTIC_ERROR; } for (size_t i = 0; i < nameList->child_count; i++){ BoxMember *def = mem_alloc(MemoryNamespaceSet,sizeof(BoxMember)); def->box = ParentBox; def->type = declType; def->initalizer = init; def->name = nameList->children[i]->value; def->nodePtr = currentNode; if(g_hash_table_contains(ParentBox->member, (gpointer)def->name)){ return SEMANTIC_ERROR; } g_hash_table_insert(ParentBox->member,(gpointer)def->name,def); } return SEMANTIC_OK; } int createBoxFunction(const char* boxName, Type *ParentBoxType, AST_NODE_PTR currentNode) { Function * function = mem_alloc(MemoryNamespaceSet, sizeof(Function)); int result = createFunction(&function,currentNode); if( result == SEMANTIC_ERROR) { return SEMANTIC_ERROR; } function->name = g_strjoin("", boxName , "." , function->name, NULL ); Parameter param; param.name = "self"; param.nodePtr = currentNode; param.kind = ParameterDeclarationKind; param.impl.declaration.qualifier = In; param.impl.declaration.nodePtr = currentNode; param.impl.declaration.type = ParentBoxType; if(function->kind == FunctionDeclarationKind) { g_array_prepend_val(function->impl.declaration.parameter,param); }else { g_array_append_val(function->impl.definition.parameter, param); } addFunction(function->name,function); return SEMANTIC_OK; } int createBox(GHashTable *boxes, AST_NODE_PTR currentNode){ BoxType * box = mem_alloc(MemoryNamespaceSet,sizeof(BoxType)); box->nodePtr = currentNode; const char * boxName = currentNode->children[0]->value; AST_NODE_PTR boxMemberList = currentNode->children[1]; Type * boxType = mem_alloc(MemoryNamespaceSet, sizeof(Type)); boxType->nodePtr = currentNode; boxType->impl.box = box; for (size_t i = 0; boxMemberList->child_count; i++){ switch (boxMemberList->children[i]->kind) { case AST_Decl: if(createDeclMember(box, boxMemberList->children[i])){ return SEMANTIC_ERROR; } break; case AST_Def: if(createDeclMember(box, boxMemberList->children[i])){ return SEMANTIC_ERROR; } break; case AST_Fun:{ int result = createBoxFunction(boxName,boxType,AST_get_node(boxMemberList, i)); if (result == SEMANTIC_ERROR){ return SEMANTIC_ERROR; } } default: break; } } if(g_hash_table_contains(boxes, (gpointer)boxName)){ return SEMANTIC_ERROR; } g_hash_table_insert(boxes, (gpointer)boxName, box); return SEMANTIC_OK; } int createTypeDef(GHashTable *types, AST_NODE_PTR currentNode){ DEBUG("create Type define"); AST_NODE_PTR typeNode = currentNode->children[0]; AST_NODE_PTR nameNode = currentNode->children[1]; Type * type = mem_alloc(MemoryNamespaceSet,sizeof(Type)); int status = get_type_impl( typeNode, &type); if(status){ return SEMANTIC_ERROR; } Typedefine *def = mem_alloc(MemoryNamespaceSet,sizeof(Typedefine)); def->name = nameNode->value; def->nodePtr = currentNode; def->type = type; if(g_hash_table_contains(types, (gpointer)def->name)){ return SEMANTIC_ERROR; } g_hash_table_insert(types, (gpointer)def->name, def); if(g_hash_table_contains(declaredComposites, (gpointer)def->name)){ return SEMANTIC_ERROR; } g_hash_table_insert(declaredComposites, (gpointer)def->name, def->type); return SEMANTIC_OK; } Module *create_set(AST_NODE_PTR currentNode){ DEBUG("create root Module"); //create tables for types declaredComposites = g_hash_table_new(g_str_hash,g_str_equal); declaredBoxes = g_hash_table_new(g_str_hash,g_str_equal); declaredFunctions = g_hash_table_new(g_str_hash,g_str_equal); definedFunctions = g_hash_table_new(g_str_hash,g_str_equal); //create scope Scope = g_array_new(FALSE, FALSE, sizeof(GHashTable*)); //building current scope for module GHashTable *globalscope = g_hash_table_new(g_str_hash, g_str_equal); globalscope = g_hash_table_new(g_str_hash,g_str_equal); g_array_append_val(Scope, globalscope); Module *rootModule = mem_alloc(MemoryNamespaceSet,sizeof(Module)); GHashTable *boxes = g_hash_table_new(g_str_hash,g_str_equal); GHashTable *types = g_hash_table_new(g_str_hash,g_str_equal); GHashTable *functions = g_hash_table_new(g_str_hash,g_str_equal); GHashTable *variables = g_hash_table_new(g_str_hash,g_str_equal); GArray *imports = g_array_new(FALSE, FALSE, sizeof(const char*)); rootModule->boxes = boxes; rootModule->types = types; rootModule->functions = functions; rootModule->variables = variables; rootModule->imports = imports; DEBUG("created Module struct"); for (size_t i = 0; i < currentNode->child_count; i++){ DEBUG("created Child with type: %i", currentNode->children[i]->kind); switch (currentNode->children[i]->kind) { case AST_Decl: { GArray *vars; int status = createDecl(currentNode->children[i], &vars); if (status) { return NULL; } if (fillTablesWithVars(variables, vars) == SEMANTIC_ERROR) { // TODO: this diagnostic will highlight entire declaration of // of variables even if just one of the declared variables // is duplicate. Consider moving this diagnostic to // `fillTablesWithVars` for more precise messaging. print_diagnostic(current_file, ¤tNode->children[i]->location, Error, "Variable already declared"); INFO("var already exists"); break; } DEBUG("filled successfull the module and scope with vars"); break; } case AST_Def: { GArray *vars; int status = createDef(currentNode->children[i], &vars); if (status) { return NULL; } DEBUG("created Definition successfully"); break; } case AST_Box: { int status = createBox(boxes, currentNode->children[i]); if (status) { return NULL; } DEBUG("created Box successfully"); break; } case AST_Fun:{ DEBUG("start function"); Function * function = mem_alloc(MemoryNamespaceSet,sizeof(Function)); int status = createFunction(&function,currentNode->children[i]); if(status == SEMANTIC_ERROR) { return NULL; } if(g_hash_table_contains(functions,function->name)){ return NULL; } g_hash_table_insert(functions,(gpointer)function->name, function); if (status){ return NULL; } DEBUG("created function successfully"); break; } case AST_Typedef:{ int status = createTypeDef(types, currentNode->children[i]); if (status){ return NULL; } DEBUG("created Typedef successfully"); break; } case AST_Import: DEBUG("create Import"); g_array_append_val(imports, currentNode->children[i]->value); break; default: INFO("Provided source file could not be parsed because of semantic error."); break; } } DEBUG("created set successfully"); return rootModule; }