import cv2 import numpy as np import Utilities import math MAX_LUM_VALUES = 256 # Task 1 # function to stretch an image def stretchHistogram(img): result = img.copy() grayscale = getLuminance(img) hist = calculateHistogram(grayscale, MAX_LUM_VALUES) minPos, maxPos = findMinMaxPos(hist) for x in range(0, img.shape[0]): for y in range(0, img.shape[1]): result[x][y] = (grayscale[x][y] - minPos) / (maxPos - minPos) * 255.0 return result # Task 2 # function to equalize an image def equalizeHistogram(img): result = img.copy() grayscale = getLuminance(img) hist = calculateHistogram(grayscale, MAX_LUM_VALUES) minPos, maxPos = findMinMaxPos(hist) # Precompute integral of histogram from left to right. sum = 0 integral = [] for i in range(0, hist.shape[0]): sum += hist[i] integral.append(sum) for x in range(0, img.shape[0]): for y in range(0, img.shape[1]): # Compute histogram value of pixel. bin = int(img[x][y][0] / 255.0 * (MAX_LUM_VALUES - 1)) # Equalize pixel. result[x][y] = (255.0 - 1.0) / (img.shape[0] * img.shape[1]) * integral[bin] return result # Hilfsfunktion # function to apply a look-up table onto an image def applyLUT(img, LUT): result = img.copy() grayscale = getLuminance(img) for x in range(0, img.shape[0]): for y in range(0, img.shape[1]): # Compute histogram value of pixel. bin = int(grayscale[x][y][0] / 255.0 * (MAX_LUM_VALUES - 1)) result[x][y][0] = LUT[bin] result[x][y][1] = LUT[bin] result[x][y][2] = LUT[bin] return result # Hilfsfunktion # function to find the minimum an maximum in a histogram def findMinMaxPos(histogram): minPos = 0 maxPos = 255 for x in range(0, histogram.shape[0]): if histogram[x] > 0: minPos = x break for x in range(histogram.shape[0] - 1, 0): if histogram[x] > 0: maxPos = x break return minPos, maxPos # Hilfsfunktion # function to create a vector containing the histogram def calculateHistogram(img, nrBins): # create histogram vector histogram = np.zeros([nrBins], dtype=int) for x in range(0, img.shape[0]): for y in range(0, img.shape[1]): bin = int(img[x][y][0] / 255.0 * (nrBins - 1)) histogram[bin] = histogram[bin] + 1 return histogram def luminanceD65(rgb: np.ndarray) -> np.float64: """ Compute the luminance value of the specified linear RGB values according to the D65 white point. @param rgb(np.ndarray): sRGB image @returns The luminance value """ return np.float64(rgb @ [0.2126, 0.7152, 0.0722]) def getLuminance(img): result = img.copy() for x in range(0, img.shape[0]): for y in range(0, img.shape[1]): lum = luminanceD65(img[x][y]) result[x][y][0] = lum result[x][y][1] = lum result[x][y][2] = lum return result def apply_log(img): grayscale = getLuminance(img) result = img.copy() # Logarithmic scale factor. LOG_SCALE_FACTOR = 2.0 for x in range(0, img.shape[0]): for y in range(0, img.shape[1]): # Compute logarithmically scaled D65 luminace # and clamp result to be smaller 255. lum = min(255, math.log(grayscale[x][y][0]/255.0 + 1) * 255.0 * LOG_SCALE_FACTOR) result[x][y][0] = lum result[x][y][1] = lum result[x][y][2] = lum return result def apply_exp(img): grayscale = getLuminance(img) result = img.copy() # Logarithmic scale factor. EXP_SCALE_FACTOR = 0.5 for x in range(0, img.shape[0]): for y in range(0, img.shape[1]): # Compute logarithmically scaled D65 luminace # and clamp result to be smaller 255. lum = min(255, (math.exp(grayscale[x][y][0]/255.0) - 1) * 255.0 * EXP_SCALE_FACTOR) result[x][y][0] = lum result[x][y][1] = lum result[x][y][2] = lum return result def apply_inverse(img): grayscale = getLuminance(img) result = img.copy() for x in range(0, img.shape[0]): for y in range(0, img.shape[1]): # Compute logarithmically scaled D65 luminace # and clamp result to be smaller 255. lum = 255.0 - grayscale[x][y][0] result[x][y][0] = lum result[x][y][1] = lum result[x][y][2] = lum return result def apply_threshold(img, threshold): grayscale = getLuminance(img) result = img.copy() for x in range(0, img.shape[0]): for y in range(0, img.shape[1]): lum = 0 if grayscale[x][y][0] >= threshold: lum = 255 result[x][y][0] = lum result[x][y][1] = lum result[x][y][2] = lum return result