{ "cells": [ { "cell_type": "markdown", "id": "eec7b0ac-eba3-4bd8-810d-259fd572d5bc", "metadata": {}, "source": [ "# Skalierung" ] }, { "cell_type": "code", "execution_count": 3, "id": "aed2b11e-27ad-408c-bce5-fd9df2ff5886", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 4, "id": "f4e94998-91ac-40c8-99f1-f4b47ddb175a", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | Price | \n", "BuildingArea | \n", "
---|---|---|
1 | \n", "1035000.0 | \n", "79.0 | \n", "
2 | \n", "1465000.0 | \n", "150.0 | \n", "
4 | \n", "1600000.0 | \n", "142.0 | \n", "
6 | \n", "1876000.0 | \n", "210.0 | \n", "
7 | \n", "1636000.0 | \n", "107.0 | \n", "
... | \n", "... | \n", "... | \n", "
13572 | \n", "650000.0 | \n", "79.0 | \n", "
13573 | \n", "635000.0 | \n", "172.0 | \n", "
13576 | \n", "1031000.0 | \n", "133.0 | \n", "
13578 | \n", "2500000.0 | \n", "157.0 | \n", "
13579 | \n", "1285000.0 | \n", "112.0 | \n", "
7130 rows × 2 columns
\n", "