Python-Math-Algorithms/newton_polynom/__init__.py

46 lines
1.5 KiB
Python

# Python module for calculating the newton polynom from given points
# _ _ _ _
# __ ___ __(_) |_| |_ ___ _ __ | |__ _ _
# \ \ /\ / / '__| | __| __/ _ \ '_ \ | '_ \| | | |
# \ V V /| | | | |_| || __/ | | | | |_) | |_| |
# \_/\_/ |_| |_|\__|\__\___|_| |_| |_.__/ \__, |
# |___/
# ____ __ __ _
# / ___|_ _____ _ __ \ \ / /__ __ _ ___| |
# \___ \ \ / / _ \ '_ \ \ \ / / _ \ / _` |/ _ \ |
# ___) \ V / __/ | | | \ V / (_) | (_| | __/ |
# |____/ \_/ \___|_| |_| \_/ \___/ \__, |\___|_|
# |___/
# Licensed under the GPLv2 License, Version 2.0 (the "License");
# Copyright (c) Sven Vogel
def combine_n(points):
k = len(points)
if k == 1:
return points[0][1]
elif k == 2:
return (points[1][1] - points[0][1]) / (points[1][0] - points[0][0])
else:
return (combine_n(points[1:k]) - combine_n(points[0:(k - 1)])) / (points[k - 1][0] - points[0][0])
# returns a polynom that will intersect all supplied points as long as
# the number of points is bigger than 1
def newton_polynom(points):
for x in range(1, len(points)):
if x == 1:
print(points[0][1], end=' + ')
else:
print(end=' + ')
print(combine_n(points[0:(x + 1)]), end='')
for y in range(x):
print(" * (x - {value:.2f})".format(value=points[y][0]), end='')
def test():
newton_polynom([[-1, 5], [2, -1], [3, -1], [4, 5], [8, 9]])